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SUMMARY

In 1967, Lumley [1] derived the proper orthogonal decomposition (POD) in an attempt

to provide a mathematical description of patterns that emerge in turbulent flow, which he

called coherent structures. The POD method derived by Lumley has deep mathematical

roots, is statistically based, and has analytical foundations that provide a rigorous mathe-

matical framework for the extraction and description of coherent structures [2].

However, it was not until 1987, when Sirovich [3] provided a numerically tractable

implementation of the POD method capable of tackling large data sets such as the ones

encountered in modern day engineering problems, did the POD gain much attention. In

recent years, the wide spread success of the POD method has greatly elevated the status of

the POD method. Today, the POD method is considered as benchmark procedure, and is at

the bedrock of modal analysis and reduced-order modeling of fluid systems [4].

Since its inception, numerous applications, adaptions and variations of the POD have

been devised. However, little attention has been paid to addressing the three-dimensional

nature of fluid systems. In fact, George [5] states that the POD is agnostic to the nature of

the data, as it does not matter whether the data is velocity, pressure or temperature.

The aim of this thesis was to explore a fundamentally different approach to the POD

that is better suited for three-dimensional fluid systems; an approach that does not com-

promise the mathematical rigor associated with the concept of coherent structures defined

by Lumley. The approach investigated in this thesis replaces the traditional field of real

numbers R, with a four-dimensional non-commutative division algebra H, known as the

quaternion division algebra.

To the knowledge of the author, this thesis is the first to incorporate quaternions into

Lumley’s mathematical framework. The introduction of quaternions into Lumley’s math-

ematical framework, generalizes the proper orthogonal decomposition to the quaternion

proper orthogonal decomposition (QPOD) while preserving its favorable features and ex-
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tending the POD to higher dimensional spaces.

In the work of this thesis it was shown that a quaternion approach abstracts Lumley’s

mathematical representation of coherent structures at a fundamental level. These abstracted

representations, defined for the first time in the work of this thesis are termed quaternion

coherent structures, exhibit interesting properties and result in a fascinating phenomena

termed the kaleidoscope effect which is not present in the traditional definition of coher-

ent structures. Furthermore, it was numerically and mathematical shown that the QPOD

method can better distill the essential dynamics present in a data set and can create more

accurate rank-m approximations as compared the POD method.

The results presented in this thesis provide compelling evidence advocating for the

use of quaternions in the context of modal analysis and reduced-order modeling of three-

dimensional fluid systems. In addition a numerical implementation of the QPOD inspired

by the work of Sirovich [3] is also presented. The numerical implementation is termed the

quaternion snapshot method and in the work of this thesis is shown to be scalable to large

systems.

Hence, a quaternion representation of the velocity flow field variables, provides a more

natural means of incorporating the flow variables into a single holistic variable, which ad-

dresses the three-dimensional nature of the data. Such a quaternion representation provides

for a more natural, physics-based framework for the treatment of three-dimensional fluid

systems which results in more informative modal analysis and more accurate reduced-order

models.

The consequences of an improved modal analysis of fluid systems will greatly help

scientists and engineers further their understanding of fluid flow. In addition, the QPOD

method provides a superior capability to capture, isolate, and distill the complex aero-

dynamics resulting in faster, and more accurate reduced order models which will aid in

many aspects of aircraft analysis and design, particularly aeroelastic analysis and design.

These accurate but lower-order representations will also pave the way for surrogate-based

xix
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optimization, uncertainty quantification, and fluid flow control over flexible structures en-

countered in modern day and future aircraft designs.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Two recent trends have emerged that are greatly influencing the future requirements of

commercial aircraft design, namely, the need for faster and more flexible aircraft [6, 7,

8, 9]. Moreover, aircraft designers are typically motivated to use less structural material,

as it leads to lighter, faster, more fuel efficient, but also more flexible aircraft. In order

to meet the demands of future aircraft designs, highly flexible wings will be crucial [10].

This increase in aircraft flexibility renders the aircraft more vulnerable to problems such as

flutter, buffeting, gust response, and many others, all which need to be accounted for during

design [11].

Aircraft design, by its very nature, is an interdisciplinary, iterative and convoluted pro-

cess. To surmount the complexities of aircraft design, aircraft designers and engineers

have developed methods that heavily rely on trending historical data from previously built

aircraft. For more details, Raymer [12] and Anderson [13] delve into great depths of the

aircraft design process. These traditional aircraft design methods assume a rigid aircraft

structure in the conceptual design and the preliminary design stages. At the early stages of

design, aeroelasticity is accounted for using empirical estimates from similar, previously

built aircraft. It is not until the latter stages of the design process, particularly the detailed

design stage, that the assumption of rigidity is relaxed and flexibility is introduced, allow-

ing for the aeroelastic analysis of the aircraft [14]. Modern aeroelastic analysis has evolved

by examining how the unsteady aerodynamics and the flexible aircraft structure interact by

formulating both an aerodynamic model and a structural model, and then coupling both

models together [15, 16, 17, 18, 19, 20]. In order to build both the aerodynamic model and

1



www.manaraa.com

the structural model, a great degree of knowledge of the flight conditions (Mach number,

angle of attack, etc.) and of the aircraft’s design itself (geometry, material properties, etc.)

need to be known. It is for these reasons that aeroelastic analysis is performed at a later

stage of the design process [14].

However, as new configurations, concepts and materials are being explored, the tradi-

tional aircraft design methods fail due to a lack of relevant historical data to trend [21].

Moreover, assuming rigidity for an inherently flexible design at the early stages of de-

sign dismisses the added potential during design space exploration associated with flexible

structures, which consequently results in sub-optimal designs [14]. As aircraft designs

migrate towards more flexible structures that operate in the subsonic, transonic, and su-

personic regimes of flight, aeroelastic analysis becomes more detrimental and influential

on the aircraft design [6]. Indeed, increasing the aircraft structural flexibility increases the

difficulty in analyzing and designing the aircraft due to the highly nonlinear coupling be-

tween the structure and the unsteady aerodynamics, specially in the transonic regime [6].

In short, the traditional aircraft design process is inadequate for designing the inherently

more flexible aircraft needed to meet the challenges of the future.

Designing the flexible aircraft of the future is going to require the capability to perform

accurate, physics-based, trade-off studies that take aeroelasticity into consideration at the

earlier stages of the design process [6]. Recent advancements in computing power and

computational fluid dynamics (CFD) have made it possible to digitally duplicate and model

aeroelastic effects at different flight and design conditions. These advancements mean that

engineers are now able to investigate and analyze their designs via computer modeling

and simulation, resulting in huge cost and time savings associated with prototyping, wind

tunnel testing and flight testing.

Unfortunately, in many instances, the amount of computational resources (CPU time

and memory) required to simulate a single configuration, at a single operating condition,

can be demanding, hence limiting the design role of CFD to a few point solutions [11, 6].
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This renders CFD impractical for applications where a large number of function evalua-

tions is required, such as design space exploration, parametric studies, uncertainty quan-

tification, optimization, etc. Yondo, Andrés, and Valero [22] explain how the deficiency

in computational resources, particularly CPU time, raises difficulties for aircraft engineers

in two different settings. Firstly, a many-query setting, which would enable aircraft engi-

neers to perform studies that require large amounts of complex, time consuming, function

evaluations for different aircraft configurations and design variables, paving the path for op-

timization, wider design space exploration, uncertainty analysis, sensitivity analysis, etc.

Secondly, a real-time setting, which would enable aircraft engineers to predict an aircraft’s

behavior instantaneously, paving the path for the creation of interactive flight simulators,

flow controllers, real-time estimators of aerodynamic coefficients, etc. Furthermore, Lucia,

Beran, and Silva [23] explain how in spite of the physics-based CFD models producing

large amounts of detailed data, very little insight and understanding of the physics govern-

ing the underlying phenomenon is gained by the aircraft engineer.

To address these issues, the scientific community has directed more attention towards

reduced-order modeling, where a high-fidelity tool is approximated by a lower-order model

that runs much faster. Using the techniques of model-order reduction [24, 25, 26, 27, 28],

the essential dynamics of the higher-order model is captured and distilled into a cheap-

to-evaluate, lower-order model. This lower-order model serves as a surrogate to the full

blown, high-order CFD model. These cheap-to-evaluate reduced-order models (ROMs)

provide aircraft engineers the means to run a lot more model simulations in a much shorter

period of time, hence enabling them to perform the necessary multidisciplinary studies

needed during the aircraft design process. Many times, the reduced-order models run or-

ders of magnitude faster than their higher-fidelity counterpart, which allows for the real-

time evaluation of these models and makes them suitable for real-time applications such

as simulators and flow controllers. Furthermore, since reduced-order models isolate and

simplify the dynamics of the phenomenon being examined, they also provide intuition into
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the underlying principles governing the phenomenon at hand. In the scientific commu-

nity, reduced-order models are also called surrogate models. Most of the attention of the

reduced-order modeling community is dedicated to the model reduction of the unsteady

aerodynamics. This is because the numerical computation of the unsteady aerodynamics is

more time consuming and more difficult to predict. The application of model reduction to

unsteady aerodynamics and fluid flow is well documented in the literature [29, 30, 4, 23].

A survey of surrogate modeling for aircraft aerodynamic analysis and design optimization

can be found in references [31, 32, 22]. According to Bhatia [14], three model-order re-

duction methods have shown promising results in aeroelastic analysis. These include the

p-transform method [33], the proper orthogonal decomposition [34] (also known as the

Karhunen-Loève) method, and the Volterra methods [35].

Different model reduction methods are more suitable than others depending on the sit-

uation at hand. For example, some model reduction methods are more useful when the

underlying governing equations of the problem are unavailable or inaccessible. Such meth-

ods are referred to as black box methods as they solely rely on observational data. Black

box methods in the scientific literature are also known as data driven methods, and have

received considerable attention in other scientific communities. White box methods tend

to perform better than black box methods, however, unlike the black box methods, they

are only applicable when the equations of the full-order system are available. Many of

these techniques have been developed and studied in different research communities. For

example, techniques for model-order reduction can be found in the fields of machine learn-

ing, data compression, dimensionality reduction, system identification and statistical learn-

ing [36].

Different circumstances and different applications dictate the model reduction method

to be used. A wide range of model-order reduction methods typically follow a two-step

procedure. In the first step, a set of basis functions is computed or chosen that satisfies a

certain criteria. In the second step, a reduced-order model is generated using the resulting
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basis functions from the first step. The proper orthogonal decomposition (POD) method in

particular has received the most attention and is ubiquitous in all the previously mentioned

fields, making it a benchmark method for generating reduced-order models.

In 1967, Lumley [1] mathematically showed that the POD basis functions, also known

as POD modes, satisfy an optimality criterion for identifying emerging patterns in turbulent

flows. Furthermore, many times a high dimensional systems evolves around a low dimen-

sional attractor. The POD basis functions span the low dimensional attractor, hence iden-

tifying and approximating the attractor, which greatly reduces the complexity of the high

dimensional system [2]. In 1987, Sirovich [3] published the snapshot method, a numerical

implementation of the POD method, which has shown to be computationally efficient and

scalable to very large systems. After the POD modes are computed, the next step is to gen-

erate a reduced order model. The most common method is the Galerkin projection [3] of the

Navier-Stokes equations onto the subspace spanned by the POD basis functions computed

in step one. Within the reduced-order modeling community, the POD-Galerkin projection

method has become the center of attention, particularly for the fluid flow reduced-order

modeling. When the underlying equations are large, complex, or unavailable, the POD

method pairs well with many system identification and machine learning techniques such

as the eigen-system realization algorithm (ERA) [37], neural networks [38], etc. One of

the features that makes the POD method attractive is its versatility, i.e. the POD method

can be used to create reduced-order models for both black box and white box scenarios. It

is for all these reasons that the POD has gained its popularity and has become a staple in

the reduced-order modeling community.

Unfortunately, there are several limitations associated with the POD method. A com-

mon problem with the POD method in fluid systems is the strong parameter dependence

of the POD basis functions [39, 40]. In order to approximate the full-order model, the

POD method uses numerical data from simulation runs at set parameters. The parame-

ters typically represent a specific aircraft configuration or specific flight conditions (Mach
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number, angle of attack, etc.) that can be varied. The optimal basis functions (POD modes)

generated via the POD method tend to perform very well when the parameters are fixed,

however, in many cases, when the parameters are perturbed, the POD basis functions fail

to provide a good approximation of the flow. Another common limitation associated with

the POD method is the stability of the reduced order models generated via the POD modes.

The POD-Galerkin procedure guarantees that the resulting reduced-order model is stable if

the full-order model is linear and stable, however, such guarantees do not hold for nonlin-

ear systems. For example, in turbulent flow, when creating a ROM via the POD method,

the high-energy modes are retained and the low-energy modes are truncated. However, the

low-energy modes typically contain the small scale eddies responsible for energy dissipa-

tion. Therefore, ROMs constructed using a subset of the POD modes can be unstable even

though the higher order model sampled is stable. Taira et al. [4] also note that the POD

arranges the modes in order of energy content and not dynamical importance.

In other cases, the POD method has been shown to be inefficient in representing fully

turbulent flows [41] as a large number of modes were required to produce a realistic ROM.

It is not clear how many POD modes to keep and how many to truncate, as there are

many truncation criteria [4]. Lumley first derived the POD method in order to extract what

he referred to as coherent structures in turbulent flow. Turbulence, which seems to be

a stochastic process, gives rise to identifiable, sporadically appearing structures, such as

eddies, that greatly influence the evolution of the flow. Lumley named those intermittently

appearing patterns as coherent structures, and was motivated in mathematically describe

those structures which ultimately led to a derivation of the POD method. However, in

many instances the POD modes are not easy to interpret and visualizing the POD modes

does not add insight to the understanding of the underlying physics of the flow.

A great limitation of the POD method is due to the linearity of the method [2], i.e. the

POD method can only capture the dynamics that can be expressed as linear combination

of the data set collected. Furthermore, the POD does not take into account the underlying
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dimensionality of the fluid system. Instead, the POD method treats one, two, and three

dimensional problems in an identical fashion; by stacking the data of every time iteration

into a single column. Tiara et al. [4] also note that the POD method relies on second-order

correlations and ignores higher-order correlations. They also add that the POD method is

not suitable in describing traveling wave structures (i.e. f(η − ct)), since those structures

cannot be separated between temporal and spatial functions.

This work extends and builds upon the previous ideas suggested by Lumley [1] and

Sirovich [3] and attempts to address some of the limitations associated with the POD

method. To the best knowledge of the author, this thesis introduces an approach that gen-

eralizes the POD method to three-dimensional fluid systems in a fashion not done before.

This novel approach provides a more informative modal decomposition of fluid systems

which may help scientists and engineers further their understanding of fluid flow. More-

over, by improving the POD method, more efficient and more accurate reduced-order mod-

els of complex systems can be created. This enables the application of surrogate based

methods (optimization, design space exploration, controls, etc.) needed to address the

aeroelastic design problems of the future.

Research Objective. Explore a new approach that addresses the three-dimensional nature

of fluid systems in the context of modal analysis and reduced-order modeling.

The second chapter of this thesis reviews the proper orthogonal decomposition, its

derivation, and limitations. In the third chapter, the novel approach suggested by this thesis

is presented, along with its necessary background information. The fourth chapter details

the experiments carried out to assess and compare the POD method with the proposed

method. The compelling results of the experiments, and a discussion of them is presented

in Chapter five. Finally, chapter six concludes on the findings of this research, and note on

the recommendations for future work is given.
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CHAPTER 2

BACKGROUND

This purpose of this chapter is to provide an in depth discussion of the proper orthogonal

decomposition. Section two motivates the need for model-order reduction in aircraft anal-

ysis and design. Section three provides a brief overview of model-order reduction, how-

ever, more attention is paid to projection based model-order reduction techniques. Section

four introduces the proper orthogonal decomposition. Section five discusses POD based

reduced-order models, their extensions, and limitations.

2.1 Historical Comment

A mathematical model of a system or a phenomenon is built to explain a system’s be-

havior and to predict its future behavior. A mathematical model of a system can also be

used to optimize the behavior of a system under certain performance criteria or to create

controllers that would regulate the behavior of the system. Typically, in order to create a

mathematical model, physics-based principles that explain the nature of a system or the

phenomenon under consideration are applied, resulting in a set of equations that relates the

different variables governing the system or phenomenon. As the complexity of the system

or phenomenon increases, so do the equations that model it.

In the case of a moving fluid, three conservation principles govern its behavior:

1. Conservation of mass (continuity equation)

2. Newton’s second law (momentum equation)

3. Conservation of energy (energy equation)

When expressed mathematically, these principles manifest themselves either as integral

equations or as partial differential equations (PDEs). There are four useful constructs where
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the previously mentioned principles can be applied, which result in a mathematical model

for fluid flow:

1. Finite control volume fixed in space

2. Finite control volume moving with the fluid (fixed mass)

3. Infinitesimal fluid element fixed in space

4. Infinitesimal fluid element moving along a streamline

The application of the three governing principles to the four mentioned constructs gives

rise to different but equivalent mathematical representations of the principles that govern

fluid flow.

The velocity vector of a fluid at a given location and time is given by

U(x, y, z, t) = u(x, y, z, t)i + v(x, y, z, t)j + w(x, y, z, t)k =


u

v

w

 , (2.1)

where the x, y, and z components of the velocity vector are given by u, v, and w respec-

tively. Applying the conservation of mass principle to a finite control volume with volume

V and surface area S fixed in space, gives the integral form of the continuity equation

∂

∂t

∫∫∫
V

ρ dV +

∫∫
S

ρU · dS = 0, (2.2)

where ρ = ρ(x, y, z, t) denotes the density of the fluid at a specific location and time.

Applying Newton’s second law to a moving fluid element results in the Navier-Stokes
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equations in the conservation form given by

∂(ρu)

∂t
+∇ · (ρuU) = −∂p

∂x
,

∂(ρv)

∂t
+∇ · (ρvU) = −∂p

∂y
,

∂(ρw)

∂t
+∇ · (ρwU) = −∂p

∂z
,

(2.3)

where p = p(x, y, z, t) denotes the pressure at a specific location and time. Similarly,

applying the conversation of energy principle results in the energy equation given by

ρ
D
Dt

(
e+
‖U‖2

2

)
= ρq̇ − ∂(up)

∂x
− ∂(vp)

∂y
− ∂(wp)

∂z
, (2.4)

where e = e(x, y, z, t) represents the internal energy due to molecular motion at a spe-

cific location and time. These five equations, in terms of six unknown flow-field variables

ρ, p, u, v, w, e, are a coupled system of nonlinear integral and/or partial differential equa-

tions. Unfortunately, this system of equations, which constitutes the governing equations

of a single phase fluid flow, has no analytical, closed-form solution, even for some of

the simplest of configurations. Consequently, due to the mathematical complexity of the

physics-based models, analytically solving the Navier-Stokes equations is not possible.

Hence, some of the earliest physics-based models relied on simplifying assumptions in

order to make the models more mathematically tractable. For example, early models of the

unsteady aerodynamic response relied on the principles of superposition and the convolu-

tion of fundamental responses for two dimensional airfoils in incompressible flow. Under

those assumptions, Wagner [42] introduced one of the earliest unsteady aerodynamic mod-

els known as the Wagner’s function for modeling the unsteady aerodynamic response to

a step change in angle of attack for a thin two dimensional airfoil. Using the principle of

superposition, it is possible to compute the unsteady aerodynamic response to any change

in angle of attack using convolution. Similarly, the Kussner’s function [43] models the

unsteady aerodynamic response to sharp-edged gust. Theodorsen’s function [44] was later
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derived for the analytic computation of the aerodynamic response due to sinusoidal motion

for a two-dimensional airfoil in incompressible flow. Sear’s function [45] extends the Kuss-

ner’s function to model the response to a sinusoidal gust. These physics-based models are

analytically-derived unsteady aerodynamic responses that are traditionally applied in the

modeling of unsteady aerodynamics and aeroelasticity. Typically, these models assume:

1. Inviscid flow

2. Irrotational and isentropic flow

3. First order interaction between the flow and structure

4. Superposition

which allow the use of linear methods. These assumptions were adequate for early aircraft

designs, particularly for aircraft designed to fly at low Mach numbers with a high aspect

ratio.

However, as the need for faster, more maneuverable aircraft arose, the previously men-

tioned physics-based models fail. As some of these assumptions are relaxed, and as the

geometric complexity is increased, the analytic derivation of the previously mentioned

functions becomes more impractical. In actuality, aerodynamic flow is:

1. Three dimensional

2. Viscous

3. Compressible

4. Nonlinear

Insisting on an analytical-based solution severely limits the potential use of physics-based

models in design.

Fortunately, it is still possible to use the underlying mathematical formulation of the

physics-based models to find approximate solutions instead of exact ones. Due to advances
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in computational fluid dynamics, it is possible to use numerical methods to find approxi-

mate solutions to unsteady aerodynamic responses for three dimensional geometries. One

of the earliest advances in numerical methods that allowed for the unsteady aerodynamic

modeling of three dimensional geometries is strip theory which originated in 1942. How-

ever, in 1969, the doublet lattice method [46] was developed by Albano and Rodden and

proved to be superior over its predecessor. In the subsonic regime, the use of the doublet

lattice method is still ubiquitous, while the use of piston theory in the supersonic regime

and at small angles of attack is more suitable [47]. The previously mentioned numeri-

cal methods are linear, allowing for the use of the superposition principle, which makes

these methods computationally fast and produce accurate results in their respective flight

regimes. However, due to the highly nonlinear flow patterns in the transonic regime, the

previously mentioned linear methods are inadequate in predicting the unsteady aerody-

namics in the transonic regime, shifting the focus of the scientific community and design

engineers to computational fluid dynamics. The increase in computational resources and

the advancements in CFD have allowed engineers to perform detailed analysis on complex

geometries that were not possible before. An important application of the CFD codes is in

predicting the highly nonlinear effect of buffeting and flutter. An example of aeroelastic

analysis done via CFD applied to a complete F-16 configuration at different Mach num-

bers in the transonic regime can be found in references [19, 48]. It took a 128-processor

computing system to perform the analysis in less than one day for a single configuration.

Performing parametric studies is computationally taxing and intractable as the number

of operating conditions and design variables increase. In order for engineers to properly

design aircraft with complex geometries under various flight conditions, engineers need to

perform a wide range of experiments at different operating conditions and under different

design parameters and aircraft configurations. Examples of typical operating conditions of

interest are free stream velocity, Mach number, angle of attack, altitude and Reynolds num-

ber, just to name a few. Such parametric studies are not currently possible due to the time
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and memory limitations of the state of the art computational resources available. In short,

engineers are faced with a design problem that requires time-consuming, highly coupled,

nonlinear simulations for a large number of parameters, which limits the applicability of

CFD codes and simulators.

Since CFD problems with moderate complexity can be computationally expensive, even

on the fastest super computers, a reduced model that can run much faster and closely ap-

proximate the original high-fidelity model is sought after. This is known as reduced-order

modeling. A reduced-order model of a phenomenon or a system is defined as the low-

est dimensional model that can capture the dominant behavior of the given phenomenon

or system. Recent advancements in machine learning algorithms, signal processing and

big data analytics have made reduced-order modeling a possibility and a viable solution

to surmount CFD shortcomings [49, 50, 51, 52]. Reduced-order modeling is expected to

enable engineers, not only to perform parametric studies that would help analyze aerody-

namic phenomena [51, 52, 23], but also perform optimization [53, 31, 32], controls [54, 55,

56], and when coupled with a structural model, aeroelastic and aeroservoelastic analysis at

speed orders of magnitudes faster than CFD. For example Lieu, Farhat, and Lesoinne [39]

applied the POD reduced-order model on a full F-16 fighter configuration to perform aeroe-

lastic analysis at the transonic regime. The full-order aeroelastic model has over two mil-

lion degrees of freedom and was effectively reduced to ninety degrees of freedom with less

than 10% error. The authors also report a speed up of the linearized flutter analysis by a

factor of five. It would also enable engineers to perform stochastic analysis, uncertainty

analysis and multi-scale modeling. Furthermore, reduced-order models can also be applied

when developing real time simulators to train pilots [33]. Applications of reduced-order

models are many, and they appear in different forms in the various fields of science and

engineering. In the next section a brief overview of model-order reduction is given. How-

ever, projection-based model-order reduction is emphasized as these methods have shown

great success in describing flow mechanics and its techniques generalize to nonlinear sys-
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tems [30].

2.2 Model-Order Reduction

A pervasive trend throughout the sciences, specially in engineering, is the tendency to

describe and simplify complex entities into a combination of its more fundamental and

elementary components. For example, complicated polynomials are factorized as a prod-

uct of their roots, matrices are decomposed as the product of other simpler matrices, and

complicated functions are expanded using tools like the Taylor series expansion, Laurent

series expansion, power series expansion, Fourier series, etc. All these techniques attempt

to break down obscure mathematical notions in terms of their simpler and more manage-

able counterparts. This aids scientists and engineers in developing a deeper understanding

and an intuition into the behavior of what is being investigated. These techniques also pro-

vide another added benefit to the engineer, namely a method for approximation and model

reduction. The literature on model reduction is large and extensive, several books have

been written on the field, and only a brief overview is attempted here. The interested reader

should refer to references [25, 26, 28] for an in depth treatment of the subject. A survey of

model reduction methods can be found in reference [24].

Schilders et al. [26], provide an interesting perspective on model-order reduction in

mathematics which is borrowed here. In 1807, Fourier published the idea of approximating

a function with a few trigonometric terms. In linear algebra, Lanczos and Arnoldi made

ground breaking progress in approximating matrices. In the area of dynamical systems and

controls, systems are usually expressed in state space form. The order or complexity of

such models is determined by the dimensionality of its state space. In this case model-

order reduction is the attempt to find a less complex model that preserves the input-output

relationship of the original model as much as possible.

Since state space models have infinite number of representations under similarity trans-

formations, model-order reduction attempts to reduce the complexity of models by preserv-
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ing the dominant characteristics of properties that are invariant under similarity transforma-

tions, such as the system’s poles or the system’s moments. Most techniques of model-order

reduction attempt to retain one or more of the those invariant characteristics.

The next section, describes how aircraft engineers arrive at high-order models and the

needs associated with simulating such models. This outlines the role of model-order reduc-

tion and its potential contribution in aircraft design.

2.2.1 High-Order Models in Aircraft Design

Model-order reduction is an active area of research that investigates the reduction of the

complexity of a dynamical system while preserving the system’s input and output behav-

ior as much as possible. Model-order reduction investigates replacing ordinary differential

equations that contain variables and/or equations in the order of 109 or more with a simpler,

more manageable set of ODEs with much fewer variables and/or equations, while preserv-

ing the response characteristics and behavior of the original set of ODEs. By casting the

ODEs into a state space form, complexity can be defined as the dimensionality of the state

space. ODEs with a high-dimensional state space are ubiquitous in many areas of engi-

neering, particularly in modeling and simulation applications. For example, modern day

CFD models are notorious for being high-dimensional and exhibiting complex and non-

linear behavior. Simulating models with such complexity can be a daunting task requiring

many hours of computer simulation time, rendering them of little use for real time appli-

cations, optimization, uncertainty quantification, sensitivity analysis, etc., all of which are

crucial design tasks. Consequently, reducing the complexity of such models to perform

simulations within an acceptable amount of time, with limited storage capacity, and with a

reliable outcome is much needed.

As an example of how complex high-dimensional models arise in aerospace engineer-
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ing, consider the following Navier-Stokes equation given in vector form as

DU
Dt

= ν∇2 U −∇ p, (2.5)

where ν represents the kinematic viscosity,X = (x, y, z)> represents the spatial coordinate

variables in vector form over the domain Ω ⊂ R3, U = (u(X, t), v(X, t), w(X, t))> repre-

sents the velocity vector field, p = p(X, t) is the pressure scalar field, and D (·)
D t represents

the material derivative given by ∂ (·)
∂ t

+ U · ∇(·). Expanding and rearranging the terms in

equation 2.5 yields the following

∂U

∂t
= ν∇2U − (U ·∇)U −∇p. (2.6)

It is clear that the local time derivative of the velocity field, ∂ U
∂ t

, is a nonlinear function of

U , the first and second order spatial derivatives UX , UXX , and various other parameters.

This is expressed in terms of the nonlinear function N(·) as

∂U

∂t
= N (U)−∇p. (2.7)

where N(U) = −(U · ∇)U + ν∇2U , and the non-linearity is due to the quadratic term

(U ·∇)U . It should be noted that equations 2.6 and 2.7 might deceivingly appear to be

ODEs since only the local time derivative appears on the left hand side. However, these

equations remain PDEs and have to be integrated temporally and spatially to realize a

solution. A solution to an nth order ODE is typically expressed as a linear combination

of n independent solutions with n undetermined constants, therefore, a solution to an nth

order ODEs is said to be n-dimensional. On the other hand, a solution to an nth order

PDE is expressed as a linear combination of n independent solutions with n undetermined

functions. Since those functions are infinite dimensional, solutions to PDEs are infinite

dimensional. Many times, analytically integrating ∂ U
∂ t

is impossible, leading engineers
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down the path of numerical approximation.

Numerically approximating ∂ U
∂ t

means that the solution U(X, t), a continuous infinite

dimensional variable, is to be discretized with respect to its spatial coordinates, X . This

results in a finite dimensional representation of U with dimension n× 3 where n ∈ N rep-

resents the number of grid points along each spatial axis, respectively, and 3 represents the

number of flow field variables u, v, and w. The spatial discretization of U(X, t) and p(X, t)

give rise to the spatially discretized velocity field usd(t) ∈ Rn×3, ∀t ∈ R+ and the spatially

discretized scalar pressure field psd(t) ∈ Rn, which are equal to U(X, t) and p(X, t) re-

spectively at the points of discretization, {Xi = (xi, yi, zi)
>}ni=1, at time t. Namely,

usd
i (t) = U (Xi, t) ,

psd
i (t) = p (Xi, t) , i = 1, . . . , n.

(2.8)

The choice of n is arbitrary and depends on the coarseness of the grid, with larger values

of n resulting in finer grids.

After the grid is spatially discretized, the next step is to utilize an approximation scheme

to approximate the spatial partial derivatives. Note that, at this stage, no discretization is

done with respect to time. Some of the most common approximation schemes used are:

• Finite Difference (FD) approximation

• Finite Volume (FV) approximation

• Finite Element (FE) approximation

To illustrate the use of a first order central FD approximation scheme, an algebraic expres-

sion for the spatial derivatives is obtained. For example, consider the difference equation

of usdi along the x-axis given by

∂U(Xi, t)

∂x
≈
usd
i+1 − usd

i−1

2∆x
,

∂2U(Xi, t)

∂x2
≈
usd
i+1 − 2usd

i + usd
i−1

∆x2
.

(2.9)
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Using the same or a similar discretization scheme, an algebraic expression that approxi-

mates the derivatives in the direction of the remaining spatial variables and their higher

order derivatives is obtained. Substituting the difference expressions for the spatial deriva-

tives, like equations 2.9, with their respective approximations in equation 2.6, yields a large,

but finite set of ordinary differential equations. This simplifies the partial time derivative in

equation 2.6 to an ordinary time derivative given by

dusd

dt
= L

(
usd)+Q

(
usd, usd)+H

(
psd) , (2.10)

where H : Rn → R(n×3), L : Rn×3 → Rn×3 are linear functions, and Q : Rn×3 × Rn×3 →

Rn×3 is bilinear. In order to remove an extra constant term, the discrete variables are offset

by the steady state solution to the Navier-Stokes equation such that usd = 0 is the steady

state solution [30].

The system of ODEs given in equation 2.10 is numerically integrated to realize a numer-

ical solution at different time steps. In the reduced-order modeling community, a solution

at every time step is known as a snapshot [3]. Unfortunately, direct numerical integration of

equation 2.10 might not always be possible. In CFD applications, the number of grid points

n can be in the order of millions, which causes usd to have a very high-dimensionality

rendering any numerical integration method impractical even on the best computational

resources available. It is these high-dimensional systems that need to be reduced while

preserving the system’s behavior.

To summarize, performing a finite discretization of the spatial variables and substituting

an approximate expression for the spatial derivatives reduce partial differential equations,

like equation 2.6, to a large system of coupled ordinary differential equations. Model-

order reduction aims to reduce the complexity of such high-dimensional ODEs to a lower

order one while retaining as much of the input-output relationship and system’s behavior

as possible. In the next section, a formal definition of model-order reduction is introduced.
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2.2.2 Formal Definition

Formally, model-order reduction is stated as follows:

Given a dynamical system G

G :


ẋ(t) = f(x(t), u(t)),

y(t) = g(x(t), u(t)),

(2.11)

where x ∈ Rn, u ∈ Rp, and y ∈ Rq. Find the dynamical system Gr

Gr :


ȧ(t) = fr(a(t), u(t)),

yr(t) = gr(a(t), u(t)),

(2.12)

such that a ∈ Rm and m� n, that also satisfies the following

minimize
Gr

J
(
y (t) , yr (t)

)
(2.13)

where J(·) is an error metric. Many reduced-order modeling techniques add further com-

plexity to the problem by imposing constraints on Gr. These constraints ensure that system

properties that exist in G (such as stability, passivity, etc.) also exist in Gr. Two classical

and widely used error metrics are:

1. The relative mismatch error based on the H2 norm defined as

JH2 = max
t≥0
|y(t)− yr(t)| = ‖G−Gr‖H2‖u‖L2 . (2.14)

2. The relative worst case error metric based on the H∞ norm defined as

JH∞ = sup
ω∈R

σmax

(
G(jw)−Gr(jw)

)
= ‖G−Gr‖H∞ . (2.15)
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In the case of linear time invariant dynamical systems, simplifications can be made, and G

is given by

G :


ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

or G(s) = C(sI − A)−1B +D, (2.16)

and the reduced-order model Gr is given as

Gr :


ȧ(t) = Ara(t) +Bru(t),

yr(t) = Cra(t) +Dru(t),

or Gr(s) = Cr(sI − Ar)Br +Dr. (2.17)

In the relative worst case error metric, merely evaluating the error metric is complex

and challenging [57]. Gugercin et al. [58], demonstrate how to solve the model-order re-

duction problem for linear dynamical systems using the relative mismatch error by finding

an approximate solution. An approximate solution needs to be found because finding an

exact solution is infeasible for a variety of reasons, even for the linear case. According to

Gugercin et al. [58], finding a global minimizer of ‖G−Gr‖H2 is difficult, and requires solv-

ing dense matrix operations that are computationally expensive, e.g., solution of a sequence

of Lyapunov equations. Hence, iterative methods are used to find a suitable approximation

Gr. In some situations, the dynamics of the full order model G is not available, only the

inputs u(t) and the outputs y(t) are available and a simple model Gr, that produces yr(t)

which approximates y(t), is desired. In such scenarios, system identification algorithms

are helpful [36]. The field of model-order reduction is rich with algorithms suitable for

different scenarios. Every algorithm is effective for different circumstances with different

properties that an engineer might find appealing for his application. The purpose here is

not to recount all the methods of model-order reduction, but to give a generalized theme of

how model-order reduction works, and to focus on a particular method known as the proper

orthogonal decomposition. For a detailed treatment of model-order reduction, the reader
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should refer to the following books [25, 26, 28].

Typically, model-order reduction procedures follow a two-step approach. In the first

step, a set of basis functions, sometimes known as modes, is computed. In the second step,

a reduced-order model is constructed using the basis functions computed from step one. In

the fluid flow model-order reduction community, the POD method is used to generate the

basis functions. If the full-order model equations are available, a common procedure for

step two is to project those equations onto the POD basis functions. This broad class of

methods are known as projection-based model-order reduction methods [27]. Projection-

based model-order reduction has shown great success in describing flow mechanics and its

techniques generalize to nonlinear systems [30]. It is therefore discussed in more detail in

the next section.

2.2.3 Projection-Based Model-Order Reduction

Model reduction via projection is one of the most ubiquitous techniques for model reduc-

tion specifically in flow mechanics. A formulation of the model reduction via projection is

given by de Villemagne and Skelton in reference [59] and a survey is given by Benner et

al. [27]. Given a nonlinear dynamical system, equation 2.11, the system of equations with

full observation of the states are

d
dt
x(t) = f

(
x(t), u(t)

)
,

y(t) = Ix(t).

(2.18)

Define S to be the subspace spanned by m unit vectors in the state space, φi ∈ Rn, i =

1, . . . ,m. The state vector x(t) and its derivative ẋ(t) are projected onto the subspace S
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using the projection operation PΦ as follows

PΦ

(
x(t)

)
= φ1φ

>
1 x(t) + · · ·+ φmφ

>
mx(t),

=

 φ1 . . . φm


︸ ︷︷ ︸

Φ


φ>1 x(t)

...

φ>mx(t)


︸ ︷︷ ︸

a(t)

,

= ΦΦ>x(t),

= Φa(t),

= x̃(t),

(2.19)

where the vector a(t) ∈ Rm is referred to as the reduced state vector and x̃(t) ∈ Rn is the

approximate state vector. Essentially the vector a(t) is a set of coordinates that represent

the approximate state vector x̃(t) using the basis vectors {φi}mi=1. The same projection

process is applied to the state velocity vector ẋ(t)

PΦ

(
d
dt
x(t)

)
= ΦΦ>

d
dt
x(t),

= Φ
d
dt
(
Φ>x(t)

)
,

= Φ
d
dt
a(t),

= Φȧ(t),

= ˙̃x(t).

(2.20)

Because x̃(t) and ˙̃x(t) are orthogonal projections of x(t) and ẋ(t), respectively, onto the

subspace S, then (x − x̃) ∈ S⊥ and (ẋ − ˙̃x) ∈ S⊥. Therefore, x̃(t) and ˙̃x are the best
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approximates of x(t) and ẋ(t) in the subspace S, which is stated as follows

x̃(t) = arg min
v∈S
‖v − x(t)‖2, (2.21)

˙̃x(t) = arg min
v∈S
‖v − ẋ(t)‖2. (2.22)

Now that the reduced state vector a(t) is defined as coordinates of the projection of the

original state vector onto the subspace S spanned by the choice of basis vectors Φ, the next

step is to find a set of equations that can be used to model the evolution of the reduced states

such that x(t) ≈ x̃(t) = Φa(t),∀t. In other words, an equation of motion that dictates the

evolution of the reduced state vector a(t) is sought after. Note that the derivative and the

projection operations commute, therefore, derivative of the projected state vector, is equal

to the projection of the state derivative, i.e.

d
dt

(
PΦ

(
x (t)

))
= PΦ

(
d
dt
x(t)

)
, (2.23)

˙̃x = PΦ

(
f
(
x(t)

))
. (2.24)

It is tempting to assume that ˙̃x = f(x̃, u(t)), however, generally speaking

˙̃x(t) 6= f

(
x̃(t), u(t)

)
. (2.25)

Although the function f(·) maps the state vector x(t) to its derivative ẋ(t), that does not

imply that it maps the approximated state vector x̃(t) to its derivative ˙̃x(t). This is due to

the fact that f and PΦ do not necessarily commute, i.e.

˙̃x = PΦ

(
f
(
x(t)

))
6= f

(
PΦ

(
x(t)

))
. (2.26)

By definition x̃ and ˙̃x are projections, and therefore constrained to be in the subspace S,

however f(x̃) does not have the same restrictions.
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It is desirable to find a reduced-order model (a model that dictates the evolution of the

approximated states in terms of the reduced coordinates) where the velocity residual ε(t) is

minimized. The velocity residual is defined as follows

ε(t) = PΦ

(
f
(
x(t)

))
− f

(
PΦ

(
x(t)

))
,

= ˙̃x(t)− f(x̃(t)).

(2.27)

Generating a reduced-order model that minimizes velocity residual ε(t) by constraining

the velocity residual to be orthogonal to the subspace S is known as Galerkin approxima-

tion [23]. By definition of orthogonality,

< φi , ε >= 0, i = 1, . . . ,m, (2.28)

⇐⇒ Φ>
(

˙̃x(t)− f
(
x̃(t)

))
= 0. (2.29)

Hence, minimizing the residual error via the Galerkin approximation demands that

Φ> ˙̃x(t) = Φ>f(x̃),

Φ>Φȧ(t) = Φ>f(Φa(t)).

(2.30)

If the unit vectors φi were chosen to be orthogonal to each other, then Φ>Φ = I and

ȧ(t) = Φ>f

(
Φa(t)

)
. (2.31)

Therefore, the reduced-order model is optimal in the sense of minimizing the velocity

residual ε(t). For the sake of clarity, Carlberg et al. [60] equivalently phrase the result

of equation 2.31 as follows: if Φ>Φ = I , then

d
dt
a(t) = arg min

v∈Rm
‖Φv − f

(
x̃(t), u(t)

)
‖2. (2.32)
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Orthogonal projection-based model-order reduction (also known as Galerkin projection)

only requires an orthonormal set of basis vectors {φi}mi=1. With an orthonormal basis vec-

tors, the state vector x(t) and the state function f(·) can both be projected onto a lower-

dimensional subspace S to derive a reduced-order model in an optimal fashion.

In summary, one set of projection reduced-order models, Galerkin reduced-order mod-

els, are created using the same two step process described in section 2.2.2. In the first step,

a set of m orthogonal unit vectors {φi}mi=1 are chosen. In the second step, the full-order

model is reduced by projecting its equations of motion onto a lower dimensional subspace

spanned by the basis vectors from step one, resulting in a reduced-order model

d
dt
a(t) = Φ>f (Φa(t), u(t)) , a(0) = Φ>x(0),

yr(t) = Φa(t).

(2.33)

These reduced equations are now of order m as opposed to the full-order model which

has an order of n. The reduced-order state equation is integrated and the original model is

approximated via

y(t) = x(t) ≈ yr(t) = x̃(t) =
m∑
i=1

φiai(t) = Φa(t) (2.34)

The procedure described outlines how to construct an m-dimensional projection-based

reduced-order model using any set of orthogonal unit vectors {φi}mi=1. In order to construct

an effective reduced-order model, special attention should be given to the choice of the

basis vectors {φi}mi=1. It is desirable to generate a reduced-order model that accurately ap-

proximates the full-order model by capturing the essential dynamics in the full-order model

with as few basis functions as possible, i.e. m� n. In the next section, the proper orthogo-

nal decomposition method for finding the optimal basis functions is described. The proper

orthogonal decomposition is chosen as it is the most ubiquitous and promising method used

in computing the basis functions.
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2.3 Proper Orthogonal Decomposition

The proper orthogonal decomposition (POD) has enjoyed great success in many fields of

science and engineering, such as machine learning, probability and statistics, signal pro-

cessing, etc. In the literature, the POD is also known as the Karhunen-Loève decomposition

(K-L decomposition), principle components analysis (PCA), and empirical eigenfunction

decomposition.

The POD was first introduced to the fluid flow community by Lumley [1] in 1967 to

better understand and analyze turbulent flow. In his approach to characterize turbulent flow,

Lumley derived the POD method in an attempt to provide a mathematical description of

repeating patterns in the flow, which he called coherent structures. The success of the POD

in decomposing complex flows has made the method a focal point of investigation, and

a central theme for the modal analysis of fluid flows. Moreover, the coherent structures

computed via the POD method can be used as basis function which enables the dynamical

modeling of fluid systems [23]. The success of the POD has resulted in many variations,

adaptations, and applications of the POD method [30, 4]. In the next section, the POD is

investigated in greater depth. A full treatment of the topic is available by Holmes, Lumley

and Berkooz [61].

2.3.1 Turbulence and Coherent Structures

Experimental and theoretical advancements in fluid dynamics suggest a new approach to

turbulent flow. A physical phenomenon is said to be random when its future behavior

cannot be predicted within reasonable experimental error. While at first sight turbulent

flow seems to be random and unpredictable, recent advancements have shown underlying

patterns that can be exploited in predicting turbulent flow. Turbulent flow is governed by

dissipative partial differential equations, the Navier-Stokes equations (equations 2.3). Dis-

sipative chaos theory has shown that the long term behavior of such PDEs resides on a
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finite and sometimes low dimensional manifold known as strange attractors [61]. Experi-

mentally, it has also been shown that these attractors exist. Lumley termed these attractors

as coherent structures. Coherent mean persistent and reappearing, and structures mean flow

patterns. Lumley [1] in 1967, was first to suggest a mathematical procedure for extracting

and describing coherent structures that can be used for further analysis. The procedure

consists of taking the proper orthogonal decomposition of the two point spatial velocity

correlation matrix, even though the mathematical derivation of these structures does not

necessarily coincide with the experimental ones [5]. For an in depth treatment of the sub-

ject, refer to references [61, 62].

To properly establish the derivation of the proper orthogonal decomposition for extract-

ing coherent structures, a few assumptions have to be made. For incompressible flows the

following is an expression of the Navier-Stokes equation

DU

D t
+∇p = ν∇2U, (2.35)

∇ · U = 0, (2.36)

with the appropriate boundary conditions. The flows are assumed to be turbulent but time

stationary and ergodic. Time stationary implies that any statistic computed over the en-

sembles remains constant with time, i.e. statistical properties do not change with time. For

example, the ensemble average of the speed in the x-direction E[u(X, t)], at a certain loca-

tion X and time t, is given by the average of the observations ui(X, t) where the index i

represents a different ensemble (a different realization of a stochastic process)

E[u(X, t)] = lim
N→∞

1

N

N∑
i=1

ui(X, t),

= C, ∀t ∈ R+.

(2.37)

Assuming ergodicity allows for the computation of statistics using observations from one
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ensemble collected over time instead of commuting statistics over many ensembles at a

fixed time. Proceeding with the same example of the average speed in the x-direction and

applying the principle of ergodicity

E[u(X, t)] = lim
N→∞

N∑
i=1

ui(X, t),

= lim
T→∞

∫ T

0

u(X, τ) dτ, ∀t ∈ R+.

(2.38)

This enables the computation of ensemble averages such that the flow can then be separated

into a sum of its mean and fluctuation around the mean. With a slight abuse of notation, the

fluctuations are denoted by v(·, ·),

v(X, t) = U(X, t)− E [U(X, t)] . (2.39)

Hence v(X, t) is now a stochastic process with zero mean. Let X1, X2 ∈ R3 represent the

Cartesian coordinates of two points in the domain of a fluid, the two point spatial correlation

function R(·, ·) is defined as

R(X1, X2) = E [v(X1, t)v
?(X2, t)] . (2.40)

Since v(·, ·) ∈ R3, the complex conjugate transpose is reduced to a transpose, and using

the property of ergodicity, the two point spatial correlation function is then re-expressed as

R(X1, X2) =
1

T

∫ T

0

v(X1, τ)v>(X2, τ) dτ. (2.41)

The fluid velocity fluctuation variable v(·, ·), can also be expressed as the superposition

of spatial modes multiplied by time coefficients as follows

v(X, t) =
∞∑
i=1

φi(X)ai(t). (2.42)
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Any set of admissible spatial functions can be used. Admissible is used here to imply

orthonormal functions that meet the boundary conditions. Hence, every φi(X) that satisfies

the boundary conditions of the original problem.

In order to create a reduced representation of the flow, the infinite sum is truncated to

include only the first m terms. This results in an approximate representation vm of order m

given by

vm(X, t) =
m∑
i=1

φi(X)ai(t). (2.43)

This poses an interesting question, whatm spatial modes give rise to the best approximation

of the flow? Formally, this is stated as the following optimization problem

minimize
{φi(X)}mi=1

εm =

∫ T

0

∥∥∥∥∥v (X, t)−
m∑
i=1

〈v (X, t) ,φi (X)〉X φi (X)

∥∥∥∥∥
2

X

dt,

subject to φi(X)>φj (X) = δij, 1 ≤ i, j ≤ m.

(2.44)

An optimal solution {φi}mi=1 to the minimization problem is called a POD basis of rank

m. With some algebraic manipulation of the integrand, the minimization problem (equa-

tion 2.44), can be restated as a maximization problem. The integrand in equation 2.44 is

manipulated as follows

∥∥∥∥∥v (X, t)−
m∑
i=1

〈v (X, t) ,φi〉φi

∥∥∥∥∥
2

X

=

〈
v (X, t)−

m∑
i=1

〈v (X, t) , φi〉X φi ,

v (X, t)−
m∑
i=1

〈v (X, t) , φj〉X φj

〉
X

,

= ‖v (X, t) ‖2
X − 2

m∑
i=1

〈v(X, t) ,φi〉2X

+
m∑
i=1

m∑
j=1

〈v(X, t) ,φi〉X 〈v(X, t) ,φj〉X φ
>
i φj,

= ‖v (X, t) ‖2
X −

m∑
i=1

〈v(X, t) ,φi〉2X .

(2.45)
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Since ‖v (X, t)‖2
X is a constant and does not change for a given problem, minimizing

the previous expression is equivalent to maximizing the sum of the projections squared.

Hence, analogous to the minimization problem is maximizing the integral of the sum

of the length squared of the projections of v(X, t) onto φ(X), the subspace spanned by

φ1(X), . . . , φm(X). The property of additivity of the inner product yields a more compact

representation of the minimization problem stated as a maximization problem

maximize
φ(X)

∫ T

0

〈v (X, t) ,φ (X)〉2X dt,

subject to ‖φ (X)‖2
X = 1.

(2.46)

In order to solve the maximization problem, the following functional is defined

J [φ (X)] =

∫ T

0

〈v (X, t) ,φ (X)〉2X dt− λ
(
‖φ (X)‖2 − 1

)
,

=

∫ T

0

〈v (X, t) ,φ (X)〉X 〈v (X, t) ,φ (X)〉X dt− λ (〈φ (X) ,φ (X)〉 − 1) .

(2.47)

A necessary condition for φ to be an extremal of J is that the functional derivative of J

must equal zero for all possible variations φ+ δψ, δ ∈ R. Mathematically, this is expressed

as
d
dδ

∣∣∣∣
δ=0

J [φ (X) + δψ (X)] = 0, ∀ψ ∈ H. (2.48)

The expression is simplified as follows

d
dδ

∣∣∣∣
δ=0

J [φ+ δψ] =
d
dδ

[∫ T

0

〈v ,φ+ δψ〉X 〈v ,φ+ δψ〉X dt

− λ (〈φ+ δψ ,φ+ δψ〉X − 1)

]∣∣∣∣
δ=0

, ∀ψ ∈ H,

= 2

∫ T

0

〈v ,ψ〉X 〈v ,φ〉X dt− 2λ 〈φ ,ψ〉X , ∀ψ ∈ H,

= 2

∫ T

0

〈v 〈v ,φ〉X′ ,ψ〉X dt− 2λ 〈φ ,ψ〉X , ∀ψ ∈ H. (2.49)
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Note that the inner product < · , · >X is an integral with respect to the spatial coordinates

and the order of spatial integral can be swapped with time integral. Setting the first variation

to zero and noting that the inner product is commutative for real numbers leads to

0 =

〈∫ T

0

v(X, t)
〈
v(X ′, t) ,φ(X ′)

〉
X′

dt ,ψ(X)

〉
X

− λ
〈
φ(X) ,ψ(X)

〉
X

, ∀ψ ∈ H,

=

〈〈∫ T

0

v(X, t)v>(X ′, t) dt ,φ(X ′)

〉
X′

,ψ(X)

〉
X

− λ
〈
φ(X) ,ψ(X)

〉
X

, ∀ψ ∈ H,

=

〈〈∫ T

0

v(X, t)v>(X ′, t) dt ,φ(X ′)

〉
X′
− λφ(X) ,ψ(X)

〉
X

, ∀ψ ∈ H.

(2.50)

Since the previous expression shows that the inner product is always zero ∀ψ 6= 0 ∈ H , it

must be that ∫
Ω

∫ T

0

v(X, t)v>(X ′, t) dt φ(X ′)dX ′ − λφ(X) = 0. (2.51)

This reveals the integral eigenvalue-eigenvector problem that optimally solves the maxi-

mization problem and is an extremal of J . This is given by

∫
Ω

R(X,X ′)φ(X ′) dX ′ = λφ(X). (2.52)

The eigenvectors, φ(X), is what Lumley referred to as the coherent structure. The eigen-

value problem in equation 2.52 is known as the Fredholm integral equation [63]. The

interested reader should refer to Fredholm theory for an in-depth treatment of the topic. In

the next section, the computational methods that implement the proper orthogonal decom-

position method are described.

2.3.2 Computational Methods

The first implementation, first popularized by Lumley [1] in the fluid flow community, is

known as the direct method. It has been coined as the direct method since the implemen-
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tation directly perform the decomposition suggested by Lumley on the discretized version

of equation 2.52. The second implementation of the proper orthogonal decomposition, is

known as the method of snapshots, first devised by Sirovich [3] and has gained large suc-

cess and popularity. The snapshot method follows an indirect approach in computing a

discretized decomposition of equation 2.52.

Both implementations yield the same results, albeit the snapshot method is computa-

tionally tractable and the direct method is not. The snapshot implementation of the POD

method has largely contributed to the popularity of the POD method, as it offers huge com-

putational time and memory savings. The snapshot implementation allows for the POD

method to be scalable to problems with large data sets such as the ones encountered in

modern day CFD problems.

In numerical simulations, the temporal and spatial variables are discretized. Hence, the

integral in the eigenvalue problem given by equation 2.52 is no longer applicable. As a re-

sult, the discretized version of the two spatial correlation function is used instead. The flow

field variables of interest are arranged column wise, where every column is the numerical

data obtained at a snapshot of time (specific time instant) from either measurements taken

in an experiment or numerical data computed via a CFD simulation. The following data

matrices are defined

U d =


u1

1 u2
1 . . . uN1

...
... . . .

...

u1
n u2

n . . . uNn

 , V d =


v1

1 v2
1 . . . vN1

...
... . . .

...

v1
n v2

n . . . vNn

 , W d =


w1

1 w2
1 . . . wN1

...
... . . .

...

w1
n w2

n . . . wNn

 ,
(2.53)

where Ud, V d,W d ∈ Rn×N , n represents the number of grid points, N represents the

number of snapshots (time instances where data is collected), the superscript indicates the

snapshot instance, and the subscript indicates the grid number. The data matrices Ud, V d

and W d are then concatenated (by vertically stacking them on top of each other) into a big
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data matrix ud ∈ R(n×3)×N as follows

ud =


U d

V d

W d

 =



u1
1 u2

1 . . . uN1
...

... . . .
...

u1
n u2

n . . . uNn

v1
1 v2

1 . . . vN1
...

... . . .
...

v1
n v2

n . . . vNn

w1
1 w2

1 . . . wN1
...

... . . .
...

w1
n w2

n . . . wNn



. (2.54)

The matrix ud is known as the snapshot matrix in the literature, and its columns coli(ud)

are known as the snapshots or strobes [3]. The norm of the data matrix ud is given by

‖ud‖2
F = ‖U d‖2

F + ‖V d‖2
F + ‖W d‖2

F. (2.55)

The Direct Method

In order to find the correlation of the flow field variables between any two grid points, the

discrete spatial correlation matrix is constructed as follows

Rd =
1

N
udud>,

=
1

N


U d

V d

W d


[
U d> V d> W d>

]
,

=
1

N


U dU d> U dV d> U dW d>

V dU d> V dV d> V dW d>

W dU d> W dV d> W dW d>

 .
(2.56)
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where Rd ∈ R(n×3)×(n×3). The discretized eigenvalue problem becomes

Rdφi = φiλi, (2.57)

After the eigenvalues and eigenvectors of the matrix Rd are computed, the components of

each eigenvector can be extracted as follows

φui = rown
j=1 (φi) , (2.58)

φvi = rown×2
j=n+1 (φi) , (2.59)

φwi = rown×3
j=n×2+1 (φi) . (2.60)

The eigenvectors φi are known as the POD modes or coherent structures.

Since the size of matrix Rd can be tremendously large, the eigen decomposition of such

a matrix can be an impossible task due to computational resource limitations. In order to

circumvent this issue, the snapshot implementation was devised [3]. In the next section,

the snapshot implementation of the POD method is outlined.

The Snapshot Method

As mentioned, the direct method is not computationally manageable to perform. This is

because the number of grid points for most current engineering applications can be large,

which renders the dimensions of matrix Rd to be even larger, therefore solving it on a

computer is restricted due to memory and computational limitations. Sirovich [3] devised

a computationally tractable version of the POD method that yields the same results and

named it the snapshot method.

At the heart of the snapshot method is an algebraic trick, namely, the eigenvalue de-

34



www.manaraa.com

composition of ud>ud is solved instead of udud>. The matrix ud>ud is given by

ud>ud =

[
U d> V d> W d>

]
U d

V d

W d

 = U d>U d + V d>V d +W d>W d. (2.61)

The eigenvalues and eigenvectors of matrix ud>ud are computed by solving the following

eigenvalue problem

ud>udψi(X) = λiψi(X). (2.62)

In this case (ud>ud) ∈ RN×N , where N is number of snapshots, a much smaller number

than n, the number of grid points. The eigenvectors that arise from equation 2.62 and the

eigenvectors that arise from equation 2.57 are related via the following relationship

φi = udψi
1√
λi
. (2.63)

which can be written in matrix form as

Φ = udΨΛ−
1
2 . (2.64)

where Φ = [φ1, . . . , φm], Ψ = [ψ1, . . . , ψm], and Λ = diag(λ1 . . . λN). Equations 2.63

and 2.64, can be easily derived by multiplying both sides of equation 2.62 by ud and com-

paring the result to equation 2.57 as follows

udud>udψi(X) = udλiψi(X), (2.65)

⇐⇒
(
udud>

)
︸ ︷︷ ︸

Rd

udψi(X)︸ ︷︷ ︸
φi(X)

= λi u
dψi(X)︸ ︷︷ ︸
φi(X)

. (2.66)

Hence, given a numerical simulation of fluid flow with N snapshots, the matrix Sd ∈
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RN×N is constructed as follows

Sd = ud>ud.

Since in most numerical applications, the number of snapshots N is much smaller than the

number of grid points n, (N � n), Sd ∈ RN×N is much smaller than Rd ∈ R(n×3)×(n×3).

The snapshot method relies on taking the eigenvalue decomposition of Sd and then trans-

forming the result into the POD modes. In this manner, the POD modes can be computed

without having to compute the matrix Rd.

A Note on the Singular Value Decomposition

It is well known from linear algebra that the eigenvalue decomposition (EVD) is intimately

related to the singular value decomposition (SVD). Specifically speaking, given a matrix

A ∈ Rp×q, the left singular vectors of A are the eigenvectors of AA>, and the right singular

vectors of A, are the eigenvectors of A>A [4]. The singular values of A are also the square

root of the eigenvalues of AA> and A>A. This means that the singular value decompo-

sition can be utilized as a means of implementing the POD method. The singular value

decomposition of matrices A and A>, are defined as the eigenvalue decomposition of the

matrices AA> and A>A,

SVD(A) = EVD(AA>), (2.67)

SVD(A>) = EVD(A>A). (2.68)

However, the numerical computation of the singular value decomposition is much more

numerically stable than the eigenvalue decomposition, therefore, it has become the method

of choice for performing the decompositions given in equation 2.57 and equation 2.62.

Moreover, the singular value decomposition offers deep insights in matrix algebra which

might aid in the understanding of coherent structures. Therefore, it is important to discuss

the singular value decomposition and how it applies.
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Typically, the singular value decomposition is viewed as a decomposition of a finite

dimensional linear operator (matrix) into more elementary operations. The singular value

decomposition states that every linear operator between two vector spaces can be expressed

in terms of three more elementary operations, namely, a rotation first, scaling second, and

then another rotation. For example, given two finite dimensional vector spaces X ∈ RN

and Y ∈ Rn, let the linear mapping A ∈ Rn×N be such that A : X → Y . The singular

value decomposition states that all linear mappings can be decomposed as follows

A = UΣV >

where, U ∈ Rn×n, V ∈ RN×N are unitary and Σ ∈ Rn×N is diagonal. This decomposition

holds for all linear operators regardless of the dimension of either the domain X , or the

target space Y .

However, using the singular value decomposition as an implementation of the POD

implies taking the singular value decomposition of the matrix ud. It is confusing to think

of the matrix ud as a linear operation between two vector spaces. What does it mean when

the matrix ud is constructed from CFD data arranged into columns? What linear operation

does that matrix perform, and what does it mean to take the singular value decomposition

of such a matrix?

In the mathematical perspective of interpreting matrices as linear operator between two

vector spaces, little to no insight is added to the problem. However, the singular value de-

composition of a matrix can be seen under another light. The singular value decomposition

has other properties that relate to the columns of a matrix. One geometric interpretation is

that the singular vectors of ud are the principal axes that minimizes the variance of the data

points. A second geometric interpretation is that the singular value decomposition attempts

to find a subspace, that maximizes the norm of vectors projected onto that subspace, the

vectors in this case are the snapshot, i.e. the columns of the matrix ud.
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Consider the following optimization problem, it will be shown that the singular value

decomposition provides the solution. Let a1, . . . , aN ∈ Rn, let U be the subspace spanned

by the unit vectors u1, . . . , um ∈ Rn,

maximize
{ui}mi=1

N∑
i=1

‖PU(ai)‖

subject to ‖ui‖ = 1, ∀i = 1, . . . ,m.

(2.69)

where PU(·) is the projection of a vector onto the subspace U . With slight abuse of notation,

let the matrix U = [u1, . . . , um]. The projection of an arbitrary vector ai, on the subspace

spanned by the columns of matrix U is given by PU(ai) = UU>ai. Hence, the following

sums are equivalent
∑N

i=1 ‖PU(ai)‖ =
∑N

i=1

∥∥UU>ai∥∥. Note that squaring the norms will

simplify the math without changing the solution, hence an equivalent problem is trying

to maximize
∑N

i=1

∥∥UU>ai∥∥2. By arranging the vectors ai into the columns of a matrix

A = [a1, . . . , aN ], the summation is automatically accounted for as a matrix operation since

m∑
i=1

‖UU>coli(A)‖2 =
m∑
i=1

‖coli(UU>A)‖2 = ‖UU>A‖2. (2.70)

Moreover, imposing the constraint of ‖U‖ = 1 makes it is enough to maximize the dot

product U>A instead of UU>A, which results in a more compact representation of the

maximization problem. Hence, the following is an equivalent maximization problem to

that of equation 2.69

maximize
U∈Rn×m

∥∥U>A∥∥2

subject to ‖U‖2 = 1, ∀i = 1, . . . ,m.

(2.71)

In order to solve this optimization problem, the Lagrangian is constructed and its partial

derivative are set to zero as follows (note that the norm of a matrix can be expressed in terms
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of the trace)

∂ L
∂ U

=
∂

∂ U

(
trace

(
U>A

(
U>A

)>)− Λ
(
trace

(
UU>

)
− 1
))

=
∂

∂ U

(
trace

(
U>AA>U

)
− Λ

(
trace

(
UU>

)
− 1
))

,

=
∂

∂ U

(
trace

(
AA>UU>

)
− Λ

(
trace

(
UU>

)
− 1
))

,

=
∂

∂ U

(
trace

(
AA>UU>

))
− Λ

∂

∂ U

(
trace

(
UU>

))
,

=

(
AA> +

(
AA>

)>)
U − Λ

(
I + I>

)
U,

= 2
(
AA> − ΛI

)
U,

= 0.

Hence, the matrix U , that sets the previous partial derivative to zero satisfies the following

relationship

AA>U = ΛU.

Therefore, the columns of U are the eigenvectors of AA>. Using simple linear algebra

arguments, it can also be shown that the error of the minimization problem is given by

N∑
i=m+1

λi(A) = minimize
U∈Rn×m

‖A− PU(A)‖2
F (2.72)

To summarize, the singular value decomposition offers an intuition into the description

of coherent structures. Namely, given a data set expressed as vectors that reside in the

vector space Rn, when arranged into columns and concatenated into a matrix, the singular

value decomposition finds the subspace U such that the projection of the vectors on to the

subspace is maximized. In the next section, properties of coherent structures (POD modes)

and their subtleties are discussed.
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2.3.3 Properties of Coherent Structures

First note that, by definition, coherent structures are assumed to be admissible. This con-

dition is enforced in the definition of the coherent structures. Moreover, by construction,

coherent structures are constrained to be orthonormal, this can be seen in the problem defi-

nition in equations 2.44 and 2.46. The first two properties of coherent structures are restated

from Holmes et al. [61],

Property 1. Coherent structures satisfy linear boundary conditions.

Property 2. Coherent structures are orthonormal to each other, i.e.

∫
Ω

φ>i (X)φj (X) dX = δij =


1, if i = j,

0, if i 6= j.

(2.73)

In section 5.2.1, explains that the POD modes are linear combinations of the snapshots,

hence

φi =
N∑
j=1

αjcolj(ud) (2.74)

This implies the next property borrowed from Berkooz [2],

Property 3. If all the snapshots satisfy a linear property, then the POD modes also satisfy

the same linear property.

For example, in incompressible flow the snapshots satisfy the continuity equation and are

divergence free. Since divergence is a linear operator, this means that the coherent struc-
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tures are also divergence free by the following

div (φi) = div

(
N∑
j=1

αjcolj(ud)

)

=
N∑
j=1

αj div
(
colj(ud)

)
= 0.

(2.75)

Property 4. If the snapshots are divergence free, then the coherent structures preserve the

divergence free property as well,

div (φi) = 0, i = 1, . . . ,m. (2.76)

Other properties of coherent structures require some mathematical manipulation. Equa-

tion 2.39 shows that coherent structures are used as a basis to express the fluctuations in

fluid flow from the mean. The temporal coordinate is computed as follows

ai(t) = 〈v(X, t) ,φi(X)〉 (2.77)

Now consider the following

〈ai(t) , aj(t)〉 =

∫ T

0

〈
v(X, t) ,φi(X)

〉
X

〈
v(X ′, t) ,φj(X

′)

〉
X′

dt,

=

〈∫
Ω

∫ T

0

v(X, t)v>(X ′, t) dt φi(X) dX ,φj(X)

〉
X

,

=

〈∫
Ω

R(X,X ′)φi(X) dX ,φj(X
′)

〉
X′
,

=

〈
λiφi(X

′) ,φj(X
′)

〉
X′
,

= λiδij.

(2.78)
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This shows the next property of coherent structures.

Property 5. Coherent structures are uncorrelated on average.

E
[
aia
>
j

]
= δijλi. (2.79)

Another property of coherent structures is realized when equation 2.79 and equation 2.73

are introduced into the two point spatial correlation function in equation 2.41. This reduces

the spatial correlation function into a more manageable form.

Property 6. Given two points X1, X2 ∈ Ω, the two point spatial correlation function

simplifies to

R(X1, X2) =
n∑
i=1

λiφi(X1)φ>i (X2). (2.80)

In the previous sections, model-order reduction via projection onto a set of basis func-

tions was described. Moreover, the proper orthogonal decomposition was also described

as a method to extract basis function (POD modes) from a data set. In the next section,

projection-based model-order reduction onto the basis functions extracted via the POD

method is described.

2.4 POD Based Reduced-Order Models

The POD based reduced-order modeling techniques typically follow two steps. In the first

step an appropriate set of basis functions are computed from simulation data using the POD

method. In the second step, a reduced-order model is created using the basis functions from

step one. In step two, the Galerkin projection technique provides the reduced-order model

by projecting the Navier-Stokes equations onto the POD basis functions.

The combination of both the POD and Galerkin projection methods produces an elegant

solution to generating reduced-order models that have found great success in describing

flow mechanics. The details are given in the next section.
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2.4.1 POD-Galerkin Projection Reduced-Order Models

After the modes or the coherent structures have been extracted, the Navier-Stokes equations

are projected onto a smaller dimensional subspace. The projection is carried out using

Galerkin methods which yields a set of ODEs. Consider the Navier-Stokes equation 2.6

∂U

∂t
= ν∇2U − (U ·∇)U −∇p, (2.81)

and the fluctuation of the flow field variables, which can be decomposed into a sum of

orthonormal spatial and temporal modes as shown in equation 2.42 and repeated here

U(X, t) = E [U(X, t)] + v(X, t),

= E [U(X, t)] +
∞∑
i=1

φi(X)ai(t).
(2.82)

Without loss of generality, it is assumed that E[U(X, t)] = 0 is a steady solution of equa-

tion 2.81, otherwise there will be extra terms.

Inserting equation 2.82 into equation 2.81 results in the following representations of the

Navier-Stokes equation
∂v

∂t
= ν∇2v − (v ·∇) v −∇p. (2.83)

which is a slight variation of equation 2.18. Expanding the fluctuation terms in equa-

tion 2.83 yields

∂

∂ t

(
∞∑
i=1

φi(X, t)ai(t)

)
= ν∇2

(
∞∑
i=1

φi(X, t)ai(t)

)

−

(
∞∑
i=1

φi(X, t)ai(t) ·∇
)(

∞∑
i=1

φi(X, t)ai(t)

)
−∇p.

(2.84)

Since the spatial modes are assumed to be orthonormal, the new representation of the
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Navier-Stokes equation (equation 2.83) is projected onto the basis functions as was previ-

ously shown in equation 2.31. The inner product is used to perform the projections onto

the k−th mode φk as follows

〈
φk (X) ,

∂v

∂t

〉
X

=

〈
φk (X) , ν∇2v − (v · ∇) v −∇p

〉
X

. (2.85)

Due to the nature of the inner product it can be distributed as follows

〈
φk (X) ,

∂v

∂t

〉
X

= ν

〈
φk (X) ,∇2v

〉
X

−
〈
φk (X) , (v · ∇) v

〉
X

−
〈
φk (X) ,∇p

〉
X

,

(2.86)

which enables the simplification of each part separately. Starting with the left hand side of

equation 2.86, and recalling that for orthonormal modes < φi ,φj >= δij ,

〈
φk (X) ,

∂

∂t
v(X, t)

〉
X

=

〈
φk (X) ,

∂

∂t

∞∑
i=1

φi(X)ai(t)

〉
X

,

=

〈
φk (X) ,

∞∑
i=1

φi(X)
d
dt
ai(t)

〉
X

,

=
∞∑
i=1

〈
φk (X) ,φi(X)

d
dt
ai(t)

〉
X

,

=
∞∑
i=1

〈
φk (X) ,φi(X)

〉
X

d
dt
ai(t),

=
∞∑
i=1

δki
d
dt
ai(t),

=
d
dt
ak(t).

(2.87)
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For the first term in the right hand side of equation 2.86,

〈
φk (X) ,∇2v

〉
X

=

〈
φk (X) ,∇2

∞∑
i=1

φi(X)ai(t)

〉
X

,

=

〈
φk (X) ,

∞∑
i=1

∇2φi(X)ai(t)

〉
X

,

=
∞∑
i=1

〈
φk (X) ,∇2φi(X)

〉
X

ai(t),

=
∞∑
i=1

Bk
i ai(t).

(2.88)

Moving on to the second term in equation 2.86

〈
φk (X) , (v · ∇) v

〉
X

, =

〈
φk (X) ,

〈 ∞∑
i=1

φi(X)ai(t) ,∇
〉
X

∞∑
j=1

φj(X)aj(t)

〉
X

,

=

〈
φk (X) ,

∞∑
i=1

ai(t)

〈
φi(X) ,∇

〉
X

∞∑
j=1

φj(X)aj(t)

〉
X

,

=

〈
φk (X) ,

∞∑
i=1

∞∑
j=1

〈
φi(X) ,∇

〉
X

φj(X)ai(t)aj(t)

〉
X

,

=
∞∑
i=1

∞∑
j=1

〈
φk (X) ,

〈
φi(X) ,∇

〉
X

φj(X)

〉
X

ai(t)aj(t),

=
∞∑
i=1

∞∑
j=1

Ck
ijai(t)aj(t).

(2.89)

The expression can be further simplified for incompressible flows. Using Stokes’ theorem
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and the fact that div(φk) = 0, the pressure term is simplified as follows

〈
φk (X) ,∇p

〉
X

=

∫∫∫
Ω

φk · ∇p dV,

=

∫∫∫
Ω

∇ · (pφk)− p (∇ · φk) dV,

=

∫∫∫
Ω

div (pφk)− p (div (φk)) dV,

=

∫∫
∂Ω

(pφk · ~n) dS,

= 0,

(2.90)

where ~n denotes the vector normal to the boundary surface ∂Ω pointing outwards. In

many cases, the boundary integral vanishes, for example, if the velocity is zero along the

boundary, or the case where the domain is finite with no inflow or outflow, or the case if

the fluid evolves in a periodic domain.

The projection of the incompressible Navier-Stokes equation onto an infinite set of

orthonormal modes as shown in equation 2.86 is now expressed as

d
dt
ak(t) = ν

∞∑
i=1

Bk
i ai(t)−

∞∑
i=1

∞∑
j=1

Ck
ijai(t)aj(t), k = 1, . . . ,∞, (2.91)

which is an infinite set of differential equation. Note, that at this point, no approximation

has been done yet, and equation 2.91 is the exact transformation of a PDE into an infinite

set of ODEs accomplished by the introduction of an orthonormal basis. When the modes

are chosen to be the POD modes, the basis functions become the coherent structures and

ak(t) determines the dynamics of φk(X) by describing its evolution and contribution to the

flow.

If the infinite set of differential equations is truncated, the resulting system is a finite

approximation of the partial differential equation. This approximation technique is known

as the Galerkin approximation first discovered by Walther Ritz. By setting all coefficients

of ak to zero for k > m, the infinite set of differential equations is reduced to a finite,
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truncated set of differential equations. This change of basis and truncation, is equivalent to

a projection onto a finite set of orthonormal modes, as was shown in equation 2.31.

The Galerkin approximation of the Navier-Stokes equation by m orthonormal basis

functions yields the projection based reduced-order model shown in equation 2.33 with the

following reduced dynamics

d
dt
ak(t) = ν

m∑
i=1

Bk
i ai(t)−

m∑
i=1

m∑
j=1

Ck
ijai(t)aj(t), k = 1, . . . ,m, (2.92)

which is a reduced-order model with orderm. The reduced-order model is then numerically

integrated and the Galerkin approximation of the flow variables is given by

v(X, t) ≈ vm(X, t) =
m∑
i=1

φi(X, t)ai(t) = Φa(t). (2.93)

It is important to note that the selection and the order of the orthonormal basis functions

plays an important role in the Galerkin approximation. The error of the reduced-order
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model is associated with the cost function defined in equation 2.44

εm =

∫ T

0

‖v (X, t)− vm(X, t)‖2
X dt,

=

∫ T

0

‖
∞∑
i=1

φi(X)ai(t)−
m∑
i=1

φi(X)ai(t)‖2
X dt,

=

∫ T

0

‖
∞∑

i=m+1

φi(X)ai(t)‖2
X dt,

=

∫ T

0

〈 ∞∑
i=m+1

φi(X)ai(t) ,
∞∑

i=m+1

φi(X)ai(t)

〉
X

dt,

=

∫ T

0

∞∑
i=m+1

∞∑
j=m+1

〈
φi(X) ,φj(X)

〉
X

a?i (t)aj(t) dt,

=
∞∑

i=m+1

∞∑
j=m+1

∫ T

0

δij a
?
i (t)aj(t) dt,

=
∞∑

i=m+1

∫ T

0

a?i (t)ai dt,

=
∞∑

i=m+1

λi.

(2.94)

When the POD modes (coherent structures) are selected and ordered according to their

corresponding eigenvalues in descending order

λ1 ≥ λ2 ≥ λ3 ≥ · · · , (2.95)

the error εm of the reduced-order model is minimized. An important property to note is

that the error monotonically decreases by adding more POD bases into the reduced-order

model. This provides a means of selecting which POD modes to use in creating a reduced-

order model. A typical truncation criteria is to include the first m modes such that

∑m
i=1 λi∑n
i=1 λi

≈ 0.9. (2.96)

However, Taira et al. [4] argue that there is no clear indication of what the truncation criteria
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should be.

In many circumstances, it can be more helpful to pair the POD with a system identifi-

cation technique instead of a projection-based model reduction technique. The next section

describes how the POD can be used with system identification algorithms.

2.4.2 POD and System Identification Reduced-Order Models

There are several issues that occur from POD-Galerkin reduced-order models. First, for

nonlinear systems, there are no guarantees that the reduced-order model is stable, even

though the full-order model being approximated is stable [64]. Second, many times the un-

derlying equations that govern the behavior of the full-order model are unknown, therefore

it is sometimes desirable to generate a data driven reduced-order model. This masks the

need for the knowledge of the underlying physics of the problem at hand.

Typically, a data set is observed over a period of time. The POD is then used to compute

the orthonormal basis function, m of which are kept while the rest are truncated. The

reduced coordinates can then be computed

ai(t) =

〈
v(X, t), φi(t)

〉
X

, i = 1, . . . ,m. (2.97)

This set of reduced coordinates is then coupled with an algorithm of choice to create a data

driven reduced-order model.

For example, Issac [37] developed a reduced-order model for the pressure distribution

of the AGARD 445.6 wing under structural deformations using the POD as a dimensional-

ity reduction algorithm and the eigen-system realization algorithm [65] (ERA) as a system

identification algorithm at different Mach numbers. The method showed good results in

predicting the pressure distribution over a deforming structure, hence it can be used for

dynamic aeroelastic analysis.

Other system identification techniques such as neural networks, subspace identifica-
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tion, Krigging and many other can be used as well. There are several drawbacks with this

approach, as the data-driven models can at best only contain the dynamics present in the

observations as no knowledge of the physics is incorporated into the model [29].

The scientific community has paired the POD method with a multitude of methods over

a wide spectrum of applications. Moreover, in the past few decades, many researchers have

adapted the POD method in order to improve its performance. In the next section, a few

notable extensions to the POD method are discussed.

2.4.3 Extensions

Initially, Lumley [1] in 1967, introduced the idea of extracting coherent structures in tur-

bulent flows by taking the eigenvalue decomposition of the two point spatial correlation

matrix. Sirovich [3] in 1987 found a more numerically tractable way to extract the co-

herent structures from simulation data. Namely, the proper orthogonal decomposition of a

single data matrix, Sirovich named this method the snapshot method. The proper orthogo-

nal decomposition, which can be implemented using the singular value decomposition, is

more numerically stable and is much more computationally tractable than the eigenvalue

decomposition implementation.

In 1995, Everson and Sirovich [66], developed the Gappy POD algorithm. The algo-

rithm successfully reconstructs full images of a face when 90% of the pixels of an image

were missing by applying the POD to a data set of facial images. Even though the re-

constructed image is not part of the training data set, the method showed very promising

results. In 2004, Bui-Thanh, Damodaran and Willcox [67] applied the Gappy POD in area

of aerodynamics in two different ways. First, they showed that they were able to recon-

struct aerodynamic data over airfoils when the data set is incomplete. Second, the Gappy

POD method was used to perform inverse design, namely, given a desired pressure dis-

tribution, the optimal airfoil shape can be determined by interpolation of known designs.

LeGresley and Alonso [68] also demonstrated aerodynamic shape optimization using the
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POD method.

The use of the POD method for model-order reduction was also exploited for flow con-

trol purposes. Constructing controls for systems governed by partial differential equations

is a numerically challenging problem. In 1996, Tang et al. [69] were the first to use the POD

method to control the flow around a rotating cylinder. In 1999, Kunisch and Volkwein [54]

successfully demonstrated the same approach to create a controller for the Burger’s equa-

tion with one spatial variable.

The POD method was initially demonstrated for creating reduced model pertaining to

incompressible flows. In incompressible flow, the pressure terms can be eliminated because

pressure only acts to enforce the incompressibility constraint, hence only the velocity flow

variables are important. This allows for the use of the traditional inner product without

modification at the projection step which gives acceptable results. In 2004, Rowley at

al. [70] extended the POD method to compressible flow by using an energy-based gen-

eralization of the inner product to perform the Galerkin projection step. This is because

in compressible flow, the pressure and enthalpy variables become dynamically important,

hence there is a need for an inner product that combines thermodynamic and kinetic vari-

ables in a rational way.

In 2009, Chaturantabut and Sorensen [71] developed the discrete empirical interpola-

tion method based on the work of Barrault et al. [72]. Consider the following PDE com-

posed of a linear part L(·) and a nonlinear part N(·)

∂U

∂t
(X, t) = L

(
U(X, t)

)
+N

(
U(X, t)

)
. (2.98)

Once a finite difference scheme is applied, the PDE is approximated with the following set

of ODEs
dusd

dt
(t) = Ausd (t) + Ñ

(
usd (t)

)
(2.99)

whereA ∈ Rn×n and Ñ(·) is a nonlinear function. The matrixA and the nonlinear function
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Ñ(·) represent a discrete approximations of L(·) and N(·), respectively. Using a numerical

integration scheme, the ODEs can be simulated to produce snapshots {ud
i}Ni=1. By applying

a Galerkin projection onto V , the following reduced-order model is obtained

d
dt
a(t) = V >AV a+ V >Ñ (V a(t)) . (2.100)

The matrix Ã = V >AV , is computed once in order to generate the reduced-order model,

however the problem resides in computing V >Ñ(V a(t)). This is because the nonlin-

earity is a function of a(t), hence it needs to be computed at every iteration. For some

reduced-order models, computing the nonlinearity at every iteration can be as computation-

ally expensive as simulating the full order model. Discrete empirical interpolation method

(DEIM) attempts to solve this problem by approximating the nonlinear function Ñ(·) by

projecting it onto a subspace spanned by a few nonlinear functions given by w1, . . . , wm.

This results in the following approximation

Ñ(V a(t)) ≈ Wc (a(t)) . (2.101)

where W = [w1, . . . , wm] ∈ Rn×m, and c(a(t)) is the corresponding coefficient vector. It

is clear that equation 2.101 has a lot more rows than columns. The reason for that is by

choice of m basis functions in matrix W , with the purpose of reducing the computational

cost and approximating Ñ(·). This makes equation 2.101 an over-determined system of

equations, which needs to be solved in order to determine the correct coefficients c(a(t)).

This is solved by letting some rows on the left hand side equal to the rows on the right

hand side and using a matrix P = [eρ1 , . . . , eρm ], where ej is the j-th column of the identity

matrix. Hence,

P>Ñ (V a(t)) =
(
P>W

)
c (a(t)) . (2.102)
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Which leads to the following approximation

Ñ(V a(t)) ≈ Wc (V a(t)) = W
(
P>W

)−1
P>Ñ (V a(t)) . (2.103)

What remains is the correct selection of the basis functions and matrix P . The matrix W is

computed by applying the POD to the matrix of nonlinear snapshots, [Ñ(ud
1), . . . , Ñ(ud

N)],

and the matrix P is constructed via the DEIM algorithm.

In some cases, symmetries in the flow exist. Sirovich [3] made use of this symmetry

to extend and enlarge the data set yielding more accurate modes. It is important that the

reduced-order model retain the symmetric behavior of the original system so it reflects the

qualitative properties of the original system. This also ensures that the reduced model will

inherit other properties such as dissipativity and stability. In 1993, Aubry et al. [63] demon-

strated the symmetric POD. This method guarantees that the reduced-order model inherits

symmetric properties of the full-order model (PDE) when the solution to the full order

model is invariant under finite spatial symmetries. This causes the reduced-order model

to preserve dissipative characteristics of the full-order model. Suppose that for a given

flow problem, the solution is invariant under a symmetry group G, such that if U(X, t) is

a solution, then every g ◦ U(X, t) is also a solution to the flow problem ∀g ∈ G. The

symmetric POD results in symmetric modes, which are extracted from the symmetric two

point correlation function defined as

Rs (X,X ′) = lim
T→∞

1

KT

∫ T

0

∑
g∈G

u (ψg (X) , t)u (ψg (X ′) , t) dt, (2.104)

where K is the number of elements in G. The symmetric modes are then computed as

eigenvectors to the following eigenvalue problem

∫
Ω

Rs (X,X ′)φ(X ′) dX ′ = λφ(X). (2.105)
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There are many more extensions and adaptions to the POD algorithm, however, only

a few notable ones are mentioned here. In the next section, some of the limitations of the

POD method are discussed.

2.4.4 Limitations

Although the POD has shown promising results in the field of model-order reduction, it

does have limitations. One of the limitations of the POD method is the parameter sensitivity

of the POD reduced-order models [23]. It is important to note that the POD modes are

typically computed using simulations of the flow at specific conditions such as Reynolds

number, Mach number, etc., which are called parameters. The POD modes derived are

suitable in creating reduced-order models only when the parameters are held constant. If

the coherent structures derived under one set of parameters are used to create reduced-

order models of fluid systems with another set of parameters, then POD basis functions fail

to generate accurate reduced-order models. As shown in equation 2.74, the POD modes

are a linear combination of the snapshots. Bui-Thanh et al. [73] note that the span of the

POD modes is the span of the snapshots, which determines the quality of the reduced-order

model. Research in this area is still active, and more details can be found in the following

references [74, 40, 73, 57].

When reduced-order models are created via the POD method, only the first m most en-

ergetic modes are retained, while the rest of the modes are disposed. Another shortcoming

of the POD method is that sometimes a large number of modes are needed to approximate

the full-order model, which does not provide computational savings. Moin and Keefe [41]

demonstrated the inefficiency of the POD method in accurately describing fully turbulent

models without including a large number of modes.

Rowley et al. [30] note that although the most energetic POD modes do in fact span

an optimal subspace for describing a data set, these modes might not be optimal for cre-

ating reduced-order models, which is the case for non-normal systems with large transient
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growth, such as the ones that often arise in shear flow. This is because low energy features

may be critical to the dynamics but do not necessarily best describe the given data set [75].

Taira et al. [4] also note this observation, namely, the POD arranges the modes in order

of energy content and not by dynamical importance. For example, in turbulent flows, low

energy modes trigger big changes in the flow, hence not including the low energy modes

misrepresent the dynamics and the physics of the flow. In these cases, creating a reduced-

order model using only the most energetic modes fails to distill and capture the essential

dynamics of the flow and as a result misrepresents the dynamics of the original full-order

system. Aubry, Lian, and Titi [63] demonstrated that a POD-Galerkin approximation of six

POD modes that captured 99.9995% of the total energy did not reproduce the right dynam-

ics of the Kuramoto-Sivashinsky equation. Therefore, an extension of the POD method, the

symmetric POD method, which involves the incorporation of the symmetry group is sug-

gested. The method guarantees that the reduced-order model inherits symmetric properties

of the full-order model (PDE) when the solution to the full order model is invariant un-

der finite spatial symmetries. This causes the reduced-order model to preserve dissipative

characteristics of the full-order model.

Even though the POD method is considered to be the central method for generating

reduced-order models for nonlinear systems, it is a linear procedure. It is this linearity that

has made the POD method a great success, but also the source of its limitations [2]. The

inability of the POD method to capture the essential dynamics may be attributed to the

linear nature of the method, i.e. the POD method can only capture dynamics expressed as

a linear combination of the snapshots, as revealed by equation 2.74. Tiara et al. [4] also

note that the POD method relies on second-order correlations and ignores higher-order

correlations.

Some of the limitations of the POD, particularly the inability of the POD method to

capture important dynamical features that do not contribute to the system’s energy can be

alleviated by the balanced truncation method. The balanced truncation, is a technique de-
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veloped by Moore that made ground breaking advancements. First presented in his famous

papers [76], Moore demonstrated a method for the reducing linear dynamical systems in

state space form with strong error guarantees. The method works by finding a similarity

transformation that transforms the state space model to one where the more controllable

states are also the more observable states. Eliminating states that are less controllable and

less observable, results in eliminating states that have less influence on the input-output

behavior of the full-order system, resulting in an accurate reduced-order model. Unfortu-

nately, the method of balanced truncation requires the computation of the controllability

and observability gramians of the full-order model, which is not computationally tractable

for large systems. As the balanced truncation became one of the most popular model re-

duction methods, different variants of the method arose. A survey of them can be found in

the paper by Gugercin and Antoulas [77].

Lall et al. [78, 79] showed how a numerical approximation of the controllability and

observability gramians, called the empirical gramians, can be used to find important sub-

spaces of the state space, with respect to the inputs and outputs of the system. Since this

method only requires data from simulations of the full-order system to approximate its

gramians, the suggested method can be applied to nonlinear systems and hence general-

izes the balanced truncation method to nonlinear systems. However, for large systems,

the construction of the two empirical gramians is still challenging and, in many cases, nu-

merically impractical [75]. Willcox and Peraire [80] went further, using simulations of

the dual system, they are able to obtain low-rank approximations of the gramians without

having to compute the matrices themselves. The method readily extends to multiple-input

multiple-output systems, however, it becomes intractable when the number of outputs is

large. Rowley [75] criticizes this work, showing that it results in inaccurate models and

does not actually result in balanced realizations.

Not confusing the previously mentioned method by Willcox and Peraire with the bal-

anced POD, in 2005, Rowley [75] developed the balanced POD (BPOD) method, which
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requires adjoint simulations for model reduction. The BPOD method is a computationally

tractable method for computing approximate balanced truncations, which produces mod-

els that are superior to the POD. This is because the BPOD method captures small-energy

perturbations that are highly observable, i.e. contribute to the output. However, the BPOD

method is limited to stable, linear systems and relies on the availability of adjoint informa-

tion, which may not be available, specially with experimental measurements [4]. In fact,

most of the previously mentioned methods require the full-order governing equations to

generate the reduced-order models by projecting the dynamics onto a reduced subspace.

Some of the algorithms even require the adjoint model in order to generate the adjoint

information needed.

An algorithm developed by Juang and Papa [65], known as the eigen-system realiza-

tion algorithm, only requires the impulse response and no full order governing equations to

generate the reduced-order model. This is a huge advantage, since for many CFD applica-

tions, it is difficult to extract the governing full order equations and it is easier to collect the

impulse response from simulation runs. Ma and Rowley [81] also showed that the BPOD

method is equivalent to the ERA, however the ERA does not require the system equations

and only relies on simulation data. Unfortunately, the ERA results in a reduced-order model

that is linear, requires impulse responses, and does not provide modes which can be used

to understand the dynamics of the fluid system under investigation.

According to Rowley et al. [4], the dynamic mode decomposition (DMD) decomposes

the data into modes, where each mode is associated with a frequency of oscillation and

a growth/decay rate. Furthermore, the DMD algorithm has gained popularity due to its

customizability and versatility. However, the DMD is unreliable for nonlinear systems and

only produces linear reduced-order models with non orthogonal modes. In 2018, Towne,

Schmidt, and Colonius [82], established a deep connection between the DMD algorithm

the spectral proper orthogonal decomposition [83], showing that the SPOD modes are op-

timally averaged DMD modes.
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Rowley and Dawson [30] provide an excellent review of the balanced truncation, POD,

BPOD, ERA and DMD algorithms and a survey of resources demonstrating their applica-

tion to fluid systems. Moreover, the algorithms mentioned are applied to linearized channel

flow and their results are compared. Many other variations and adaptations of the POD have

been developed and continue to be developed such as the Split POD, Temporal POD, Joint

POD, Spectral POD and others [4].

Attempts in incorporating nonlinear dimensionality reduction (NLDR) algorithms from

the field of machine learning (ML) or manifold learning is also gaining popularity in the

modal analysis of fluid systems [29]. Such ML algorithms like the local linear embedding

(LLE), nonlinear principal component analysis, cluster based dimensionality reduction,

neural networks, and others are an active area of research. Brunton, Noack, and Koumout-

sakos [29] provide an excellent discussion with a survey of references for machine learning

methods applied in fluid analysis. It is interesting to note that the POD can be formulated

as a two layer neural network with a linear activation function for its linearly weighted

input, that can be trained by stochastic gradient descent [29]. They caution, however, that

machine learning algorithms will always provide some answer to any question based on

training data, even if the data is not relevant to the question at hand. Furthermore, it is

important to consider the interpretability (the degree to which a model may be understood

or interpreted by an expert human) of the results and to what degree should machine learn-

ing based models be explainable. They also add that it is important to develop and adapt

ML algorithms that are physics-informed and physics-consistent. If machine learning al-

gorithms are to be incorporated into the analysis of fluid systems, then machine learning

solutions need to be interpretable, explainable, and generalizable.

Lucia, Beran, and Silva [23] mention that the intent of constructing ROM is to provide

a quantitative description of the dynamics at a much lower computational cost than that

of the original full-order model and to provide a means by which the system dynamics

can be readily interpreted. Bakwell and Lumley [84] were one of the first to apply the
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POD to analyze turbulent pipe flow. The first POD mode computed revealed a pair of

counter-rotating eddies. In 1991, Breuer and Sirovich [85] detail the effectiveness of the

POD in extracting the basis functions from simulation data of the two dimensional wave

equation. Breuer and Sirovich also demonstrated the robustness of the POD method in

its ability to extract the basis functions from simulation data under different resolutions

and noise contamination. Berkooz, Holmes and Lumley [2] discuss how the POD method

can be used in extracting the essential features of turbulent flow. These early examples

demonstrate the effectiveness of the POD method in extracting interpretable flow features

that capture the physics of the flow.

At the heart the POD algorithm and its variations is the singular value decomposition

applied to data put in a matrix form such as matrix ud in equation 2.54 as show in sec-

tion 2.3.2. George [5] discusses that the nature of the data does not matter whether it is

velocity, pressure or temperature, the integral represented in equation 2.52 will have the

appropriate cross-correlation function (equation 2.41). Hence, George argues that it would

be interesting to explore the consequences of alternative choices for maximization (equa-

tion 2.46).

The importance of modal analysis and reduced-order modeling of fluid systems contin-

ues to grow. The POD is important and an active area of research as it serves as the bedrock

of fluid modal analysis and reduced-order modeling of fluid systems [4]. The POD method

derived by Lumley [1] has deep mathematical roots as an attempt to extract coherent struc-

tures that help scientist and engineers understand the nature of fluid flow. The amount of

methods, algorithms, and their adaptations is vast and their applications are still not fully

explored, which raises the question, is there a need for another method? The purpose of

this thesis is to investigate the suggestion by George [5], to explore a fundamentally differ-

ent alternative to the cross-correlation function, that is better suited for a three-dimensional

flow field, without losing the mathematical relevance to coherent structures.

As discussed, the POD is statistically-based, has analytical foundations that supply a
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clear understanding of its capabilities and limitations, and provides a rigorous mathemat-

ical framework for the extraction of description of coherent structures [2]. It also offers

a tool for the construction of low-dimensional dynamical models from the Navier-Stokes

equations. The intent of this thesis is to provide a more natural, physics-based framework

for treating three-dimensional fluid flow problems while generalizing the proper orthogonal

decomposition, hence preserving its favorable features and extending the method to higher

dimensional spaces. Hence, the goal of this thesis is to address some of the limitations as-

sociated with the POD method while remaining consistent with the Lumley’s mathematical

representation of coherent structures, consequently furthering the understanding of modal

analysis of fluid systems.

The following chapter discusses how replacing the traditional field of real numbers R

with a four dimensional non-commutative division algebra H known as the quaternion divi-

sion algebra, provides an avenue to generalize the POD method and address its limitations.
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CHAPTER 3

PROBLEM FORMULATION

This thesis builds on the ideas of Lumley [1] and Sirovich [3] in an effort to generalize

the POD method, and the notion of coherent structures. In 1967, Lumley provided a math-

ematical framework for the extraction of persistent patterns, which he termed coherent

structures; in 1987, Sirovich provided an implementation of Lumley’s method that is com-

putationally tractable. However, little attention has been paid to incorporating quaternions

into Lumley’s mathematical framework. In recent years, interest in quaternions has been

increasing as non-commutative algebras find applications in the areas of science, mathe-

matics, and engineering. However, to the author’s knowledge, quaternions have never been

investigated in the field of modal analysis and reduced-order modeling of fluid systems.

This raises the following research question:

Research Question. Are there any benefits associated with a approach to the modal anal-

ysis and reduced-order modeling of three-dimensional fluid systems?

The use of quaternions in the description of the flow field variables, generalizes the

proper orthogonal decomposition to the quaternion proper orthogonal decomposition, and

the concept of coherent structures to quaternion coherent structures. The contribution of

this thesis is two fold. Firstly, it seeks to extend the current state of the art by introduc-

ing quaternions to the proper orthogonal decomposition in the context of modal analysis

and model-order reduction of three-dimensional fluid systems, and investigates the benefits

associated with the quaternion approach. Secondly, just like the POD method, the direct

implementation of the QPOD method is computationally challenging and intractable for

large problems. Hence, a scalable, computationally tractable implementation of the quater-

nion proper orthogonal decomposition is introduced and tested. The method follows from

the work of Sirovich [3], and is termed the quaternion snapshot method.
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In order to move forward with this investigation, quaternions and its algebra need to

be introduced. To that end, section 3.1 provides an informal introduction to the necessary

background information on quaternions. Section 3.2 highlights some of the applications of

quaternions in various fields of science and engineering. In section 3.3 the method being

investigated in this thesis are developed and presented. Finally, section 3.4 formulates the

concepts and the research conducted in this thesis.

3.1 Quaternions

Quaternions, were first discovered by Sir Hamilton [86] in 1843. Just as the complex

numbers are a natural extension of the real numbers, so are the quaternion numbers a natural

extension of the complex numbers (R ⊂ C ⊂ H). Quaternions, can also be considered as a

special case of octonions, O ⊃ H. In 1898, Hurwitz proved that the only normed algebras

are the real, complex, quaternion and octonion algebras. Hurwitz theorem is stated here:

Theorem 1. The only normed division algebras, which are number systems where we can

add, subtract, multiply and divide, and which have a norm satisfying

|zw| = |z||w| (3.1)

have dimension 1,2,4, or 8.

The aim of this section is to informally introduce quaternions and their important fea-

tures that will be used to develop the ideas of the methodology. The following introduction

contains cherry picked ideas necessary for the remainder of this thesis, and is borrowed

from references [87, 88, 89, 90] A more detailed treatment of quaternions can be found in

reference [91, 92].
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3.1.1 Quaternion Numbers

Definition 1. A quaternion q is an element of the four dimensional normed algebra H

over the real numbers with basis {1, i, j,k}. Quaternions have one real part, and three

imaginary parts

q = a+ bi + cj + dk (3.2)

where a, b, c, d ∈ R and i, j,k are imaginary units.

The element a is called the real part and q − a is called the vector or imaginary part. A

quaternion is said to be pure if it has a null real part (a = 0). Sometimes a quaternion can

also be compactly represented as

q = a+ bi + cj + dk = (a, q − a). (3.3)

Many notations for quaternions exist, more notably is the Cayley-Dickson notation, where

a quaternion can be expressed uniquely as

q = α + βj, α, β ∈ C, (3.4)

where α = a+ bi and β = c+ di. The Cayley-Dickson notation provides an isomorphism

between H and C2, casting a single quaternion as two complex numbers which will be

useful in quaternion matrix processing.

Let q1, q2 ∈ H be two quaternion numbers given by

q1 = a1 + b1i + c1j + d1k = (a1, ~u1), (3.5)

q2 = a2 + b2i + c2j + d2k = (a2, ~u2). (3.6)
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The addition of two quaternions is given by

q1 + q2 = (a1 + a2) + (b1 + b2)i + (c1 + c2)j + (d1 + d2)k, (3.7)

= (a1 + a2, ~u1 + ~u2). (3.8)

The multiplication rules for multiplying the quaternion imaginary units are typically sum-

marized as

i2 = j2 = k2 = ijk = −1. (3.9)

The following set of equations explicitly state the remaining multiplication rules

ij = −ji = k, (3.10)

ki = −ik = j, (3.11)

jk = −kj = i. (3.12)

This implies the following quaternion multiplication of q1 and q2

q1q2 =(a1a2 − b1b2 − c1c2 − d1d2)

+ (b1a2 + a1b2 − d1c2 + c1d2)i

+ (c1a2 + d1b2 + a1c2 − b1d2)j

+ (d1a2 − c1b2 + b1c2 + a1d2)k,

=(a1a2 − ~u1 · ~u2, a2~u1 + a1~u2 + ~u1 × ~u2).

(3.13)

If q1 and q2 are pure quaternions such that a1 = a2 = 0, then their product simplifies to

q1q2 = (−~u1 · ~u2, ~u1 × ~u2). (3.14)
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Note that quaternion multiplication is not commutative, i.e.

q1q2 6= q2q1. (3.15)

Euler’s formula can also be extended to quaternions. This allows for the interpretation

of quaternions in terms of modulus and phase. Given a quaternion q = a + bi + cj + dk,

it can also be expressed as

q = ρeζθ where


ρ =
√
a2 + b2 + c2 + d2,

ζ = bi+cj+dk√
b2+c2+d2

,

θ = arctan
(√

b2+c2+d2

a

) . (3.16)

In this polar formulation, ρ is the modulus of q, ζ is a pure unitary quaternion and θ is the

angle between the real part and the three dimensional vector part.

Definition 2. The conjugate of a quaternion, q = a+ bi + cj + dk = (a, ~u), is defined as

q̄ = a− bi− cj − dk,

= (a,−~u).

(3.17)

Definition 3. The norm of a quaternion is given by

|q| =
√
qq̄ =

√
q̄q =

√
a2 + b2 + c2 + d2. (3.18)

A quaternion q is called a unit quaternion if its norm is 1.

Definition 4. The inverse of a quaternion is defined as

q−1 =
q̄

|q|2
. (3.19)
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One of the first applications of quaternions was in the modeling of rotation and orien-

tation. This is because a three-dimensional vector p ∈ R3 where p = (px, py, pz), can be

rotated by an angle θ around an axis e = (ex, ey, ez) using quaternion multiplication. In

order to accomplish the three-dimensional rotation, define pq, q ∈ H and such that

pq = pxi + pyj + pzk, (3.20)

q = cos(θ/2) + ex sin(θ/2)i + ey sin(θ/2)j + ez sin(θ/2)k. (3.21)

The product pq,rot = qpqq−1 is a pure quaternion and its ijk-components represent the

rotation of p around the axis e by an angle of θ. The rotated coordinates are given by

prot = (pq,rot
i , pq,rot

j , pq,rot
k ) ∈ R3.

A similar procedure exists for rotating four-dimensional vectors using quaternion mul-

tiplication. A more detailed discussion on four-dimensional rotations via quaternion mul-

tiplication can be found in reference [93].

3.1.2 Quaternion Vectors

Since quaternion multiplication is not commutative, this results in two possible vector

spaces over the quaternion scalar division algebra H. For the purpose of this research,

only the right vector space over H needs to be considered. The convention that matrices

operate on the left of vectors from the vector space Hn and scalars on the right was chosen

which allows for the recovery of classical matrix calculus rules [89, 90].

Definition 5. A vector space of dimension n, namely Hn, over the division algebra of

quaternions H, is a right vector space if ∀v ∈ Hn and ∀ζ, µ ∈ H

(vζ)µ = v(ζµ). (3.22)

When applying the POD method, the snapshots are defined to be elements of a Hilbert

space [28]. Hilbert spaces provide the means for projecting vectors onto each other and
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hence onto subspaces spanned by vectors; a key enabler for optimization. This motivates

the following definition:

Definition 6. A quaternion Hilbert space is a right vector space whose elements are vectors

of quaternions, q = (q1, . . . , qn)> ∈ Hn and qi ∈ H. Over the vector space, the inner

product between two quaternion vectors p, q ∈ Hn is given by

〈p , q〉 = p?q =
n∑
i=1

p̄iqi, (3.23)

where ? denotes the quaternion transposition-conjugate operator.

Definition 7. Two quaternions vectors are said to be orthogonal if 〈x , y〉 = 0.

The inner product naturally introduces a norm and a metric. The norm of a quaternion

vector q is given by

‖q‖ =
√
〈q , q〉, (3.24)

and the distance between quaternion vectors p and q is given by

d(x, y) = ‖x− y‖ = ((x− y)? (x− y))
1
2 . (3.25)

Definition 8. The right span Sq of m quaternion vectors q1, . . . , qm ∈ Hn is the set of all

their linear combinations

Sq = span
(
q1, . . . , qm

)
=
{
q ∈ Hn such that q =

m∑
i=1

qia
q
i , ∀a

q
i ∈ H

}
.

(3.26)

The superscript "q" is used to emphasize the fact that aq
i are quaternion scalars.
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3.1.3 Quaternion Matrices

Definition 9. GivenN quaternion vectors, where each quaternion vector qi ∈ Hn, a quater-

nion matrix Q is defined as Q = [q1, . . . , qN ].

The quaternion valued matrix defines a new vector space, the vector space of quaternion

matrices where Q ∈ Hn×N . Let α, β ∈ H be quaternion scalars, p, q ∈ HN be quaternion

vectors and Q ∈ Hn×N a quaternion matrix, the following linearity of Q is satisfied

Q(pα + qβ) = (Qp)α + (Qq)β. (3.27)

For quaternion matrices, the ? operation represents the quaternion conjugate-transpose

operation. This involves the regular transpose operation as is done for real matrices, fol-

lowed by the quaternion conjugation, as shown in equation 3.17, applied to all of the matrix

entries. Given two quaternion matrices Φ ∈ Hn×m and V ∈ Hm×N , the following is true

(ΦV )? = V ?Φ?, (3.28)

(V ?)−1 = (V −1)?. (3.29)

The quaternion conjugate-transpose is used in the following definitions:

Definition 10. A quaternion matrix Q ∈ Hn×n is hermitian if Q = Q?.

Definition 11. A quaternion matrix Q ∈ Hn×n is unitary if QQ? = Q?Q = I.

Definition 12. The Frobenius norm of a quaternion matrix Q ∈ Hn×N is given by

‖Q‖F =
√

trace
(
Q?Q

)
. (3.30)
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3.1.4 Quaternion Matrix Algebra

Due to the non-commutative nature of quaternions, two formulations for the quaternion

eigenvalue eigenvector problem are possible, they are the right eigenvalue problem and the

left eigenvalue problem.

Definition 13. The right eigenvalue equation for a quaternion matrix Q ∈ Hn×n is

Qφq = φqλq, (3.31)

where, φq ∈ Hn is called the eigenvector and λq ∈ H is called the eigenvalue. The super-

script "q" is used to emphasize that the eigenvector and eigenvalue are quaternion, which

result from quaternion operations.

Swapping the position of the eigenvector and the eigenvalue in equation 3.31 results in

Qφq = λqφq. This is known as the left eigenvalue equation. Due to the non-commutative

nature of quaternions, both left and right eigenvalue problems yield different results. How-

ever, there are many issues with the left eigenvalue formulation that do not occur with the

right eigenvalue formulation [87]. Furthermore, the theory of the right eigenvalue problem

is more developed and more widely adopted by others [88], therefore it will be the choice

in this thesis as well.

Next, it will be shown how the quaternion eigenvalue decomposition (QEVD) extends

the spectral theorem of real matrices to quaternion matrices. The following theorems and

their proofs can be found in reference [87, 88].

Theorem 2. If (λq, φq) is a right eigenpair of Q ∈ Hn×n, then (w−1λqw, φqw) is also a

right eigenpair of Q, for all nonzero w ∈ H.

Proof.

Q(φqw) = (Qφq)w = (φqλq)w = (φqw)(w−1λqw). � (3.32)

69



www.manaraa.com

This implies that for quaternion matrices, every eigenvalue λq belongs to an entire set of

eigenvalues called a similarity orbit θ(λq), and every eigenvector belongs to an entire set of

eigenvectors, which will be defined as the kaleidoscope set κ(λq).

Definition 14. Let (λq, φq) be a right eigenpair of a quaternion matrix Q ∈ Hn×n. The

similarity orbit of an eigenvalue θ(λq) is defined as

θ(λq) =
{
w−1λqw : w ∈ H, w 6= 0

}
. (3.33)

Definition 15. Let (λq, φq) be a right eigenpair of a quaternion matrix Q ∈ Hn×n. The

kaleidoscope set of an eigenvalue λq is defined as

κ(λq) =
{
φqw ∈ Hn : w ∈ H, w 6= 0}. (3.34)

It is easy to note that the similarity orbits and kaleidoscope sets do not intersect, i.e. θ(λq
i )∩

θ(λq
j) = ∅, and κ(λq

i ) ∩ κ(λq
j) = ∅, when i 6= j. Moreover, since multiplying λq with a

quaternion number w on the right and w−1 on its left, w−1λqw is a rotation of λq in a four

dimensional space without any scaling. Therefore similarity orbits can be expressed as a

conjugacy class of λq,

θ(λq) =
{
w̄λqw : w ∈ H, ‖w‖ = 1

}
. (3.35)

Theorem 3. If Q ∈ Hn×n is hermitian, then every right eigenvalue of Q is real. Moreover,

the similarity orbit of each eigenvalue collapses to a single real number θ(λq
i ) = {λq

i ∈ R}.

The full proof of theorem 3 can be found in reference [88]. However, it is easy to see

how the entire similarity orbit of λq collapses to a single number if and only if λq ∈ R.

This is because all quaternion numbers commute with the real numbers, hence w−1λqw =
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λqw−1w = λq and θ(λq) = {λq ∈ R}. However, even when the similarity orbit col-

lapses to a single real number λq, the kaleidoscope set does not collapse and the quaternion

eigenvectors still belong to an infinite set of eigenvectors κ(λq).

Theorem 4. If α, β ∈ κ(λq) such that ‖α‖ = ‖β‖, then there exists w ∈ H such that

α = βw, (3.36)

where ‖w‖ = 1.

Proof. By definition, eigenvectors that belong to the same kaleidoscope set are related to

each other via multiplication with a quaternion number w ∈ H as follows

α = βw, (3.37)

=⇒ ‖α‖ = ‖βw‖, (3.38)

=⇒ ‖α‖ = ‖β‖‖w‖. (3.39)

Since ‖α‖ equals to ‖β‖, the ‖w‖ = 1. �

Thus vectors with equal norms in a kaleidoscope set are also related to each other by rotat-

ing all their entries in four dimensional space via multiplication with a unit quaternion.

Theorem 3 ensures that all singular values of a quaternion matrix are real numbers. This

finally leads to the spectral theorem or the quaternion eigenvalue decomposition (QEVD)

for quaternion Hermitian matrices

Theorem 5. IfQ ∈ Hn×n is hermitian, then there are matricesDq ∈ Rn×n and U q ∈ Hn×n

such that U q is a unitary matrix, Dq is diagonal, and

Q = U qDqU q?. (3.40)
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The spectral theorem guarantees the diagonalization of hermitian matrices. Moreover, the

matrix U q is unitary which implies that its columns are orthogonal to one another. This

paves the way for the quaternion singular value decomposition of quaternion matrices

(QSVD).

Theorem 6. If Q ∈ Hn×N is of rank m, then there exists two quaternion unitary matrices

U q ∈ Hn×m and V q ∈ Hm×N such that

Q = U qΣqV q?, (3.41)

where Σq ∈ Rm×m is a real diagonal matrix with non-negative entries. U q ∈ Hn×n con-

tains the left quaternion singular vectors and V q ∈ HN×N contains the right quaternion

singular vectors of Q. Moreover,

QSVD(Q) = QEVD(QQ?). (3.42)

The existence of the quaternion singular value decomposition allows for a definition of the

rank of quaternion matrices in terms of its singular values.

Definition 16. The rank of a quaternion matrix Q is equal to the number of its nonzero

singular values.

The quaternion singular value decomposition can also be expressed in summation form,

which motivates the following definition:

Definition 17. Let Q ∈ Hn×N , the rank-m approximation of Q is defined as

Qm =
m∑
i=1

uq
iv

q
i
?
σq
i (3.43)

where the singular values are sorted in descending order, σ1 ≥ σ2 ≥ . . . .
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Theorem 7. If Qm is the rank-m approximation of Q ∈ Hn×N , then

ε = ‖Q−Qm‖F ≤ ‖Q−M‖F (3.44)

for all quaternion matrices M ∈ Hn×N with rank m. Furthermore,

ε2 = trace
(
(Q−Qm)?(Q−Qm)

)
,

=

min(n,N)∑
i=m+1

(
σq
i (Q)

)2
=

min(n,N)∑
i=m+1

λq
i (Q)

(3.45)

3.1.5 Quaternion Singular Value Decomposition

In 1997, Zhang [91] proved the existence of the singular value decomposition of a quater-

nion matrix, however, his work did not show a direct algorithm for computing such a de-

composition. In the same paper, Zhang also showed an isomorphism between quaternion

matrices and their representation over the complex field known as the complex adjoint ma-

trix. Mehta [94] used the isomorphism to compute the eigenvalue decomposition (QEVD)

of quaternion matrices by first casting them into complex matrices. Using the same iso-

morphism, Le Bihan [95] introduced the first direct algorithm capable of computing the

singular value decomposition of quaternion matrix (QSVD). For a given quaternion matrix

Q ∈ Hn×N , the method requires the calculation of the singular value decomposition of a

complex matrix Qc ∈ C2n×2N with complex entries. Sangwine and Le Bihan [96] devel-

oped another QSVD algorithm based on the bidiagonalization of quaternion matrices using

the quaternion Householder transformation.

Using the QR factorization of quaternion matrices [97], Le Bihan and Sangwine [98]

extended the Jacobi algorithm to directly compute the singular value decomposition of

quaternion matrices. Not only is the Jacobi algorithm more computationally efficient, it was

also shown to produce more accurate results [98, 99]. An implementation of the quaternion
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singular value decomposition in MATLAB was developed by Sangwine [100] and made

available to the public.

These observations refine the research objectives of this thesis as follows:

Research Objective. Explore the use of quaternions in the context of modal analysis and

reduced-order modeling of three-dimensional fluid systems.

In the next section, a brief overview on the applications of quaternions in science and

engineering is presented. In addition, a derivation of the quaternion description of the

three-dimensional incompressible Navier-Stokes equations is outlined.

3.2 Quaternions in Science and Engineering

The POD method has been successful in many areas of science and engineering. In fact,

in 1991, Sirovich and Kirby [101, 102] applied the POD method to gray scale images

of human faces for the purpose of characterizing human faces. In 2003, Le Bihan and

Sangwine [103, 104], extended the gray scale image decomposition methods to include

color images. By expressing the RGB components of pixels as a quaternion numbers, a

N ×M color image is represented as a pure quaternion image

s(x, y) = r(x, y)i + g(x, y)j + b(x, y)k, (3.46)

where r(x, y), g(x, y), and b(x, y) are the red, green, and blue components respectively for

the pixel at position (x, y). The application of quaternion POD to color images has shown

great results [90] and continues to be an active area of research.

In order to compress color images using the POD algorithm, the color components

at every pixel are separated and then stacked on top of each other, just like a fluid flow

problem, as explained in section 2.3.2. Xu et al. [90] mention that this procedure is un-

satisfactory because the correlations among the RGB channels are not properly captured.

However, by using quaternions, each color pixel can be treated in a holistic manner. Thus,
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the relationship between the color components is better captured by the quaternion singular

value decomposition algorithm and less information is lost.

The concept of using a quaternion for signal processing is first introduced in 2004 by

Le Bihan and Mars [89] where the quaternion singular value decomposition is applied to

quaternion signals. In a vibration test, the measured time series for X,Y, and Z components

of acceleration were encoded as a quaternion signal s(m) at different locations,

s(m) = ax(m)i + ay(m)j + az(m)k, m = 1, . . . ,M. (3.47)

Then QSVD was used to analyze the signal and the result was compared to the traditional

POD method. The authors report the QSVD to be more efficient.

The success of quaternions is not limited to the compression of color images and time

signals. Indeed Kou and Xia [105] have surveyed several fields that have benefited from ap-

plying quaternions. For example, in computer graphics, quaternions have great advantages

over real numbers in modeling rotation and orientation. This is due to the limitation of

Euler angles, known as the gimbal lock phenomenon, which completely disappears when

quaternions are used to compute the rotations. For this reason many robotics application

have adopted the quaternion framework. Kou and Xia [105] also mention how quaternions

have found applications in mathematics, kinematic modeling, fluid mechanics, and quan-

tum mechanics.

3.2.1 Quaternion Representation of the Navier-Stokes Equation for Incompressible Flow

In 2002, Gibbon [106] introduced a quaternion formulation of the three-dimensional Euler

equations. In 2005, Postnikov and Stepanova [107] built on Gibbon’s work to show the

incompressible Navier-Stokes equation 2.5, formulated with only the quaternion variables

and quaternion operators. Postnikov and Stepanova [107] used the equation of motion

of vorticity as the starting point for their derivation of a quaternion representation of the
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incompressible Navier-Stokes equation. The equation of motion for vorticity, ω = ∇× U ,

is given by
∂ω

∂t
= ∇× (ω × U) +

1

R
∇2ω. (3.48)

The velocity quaternion is defined as follows

U q(x, y, z, t) = u(x, y, z, t)i + v(x, y, z, t)j + w(x, y, z, t)k

=
(
0, U(x, y, z, t)

) (3.49)

and the quaternion derivative as D = (0,∇). The following definition of the vorticity

quaternion, Ω, is given by

DU q = (0,∇)(0, U) = (−∇ · U , ∇× U) = (0 , ∇× U) = Ω. (3.50)

Define F = 1
2

(ΩU q − U qΩ), and define the Laplace operator in quaternion form as D2 =

(0,∇)(0,∇) = (−∇2, 0), the equation of motion for vorticity becomes

∂Ω

∂t
= 〈DF 〉 − 1

2
D2Ω (3.51)

where 〈DF 〉 = (DF −DF )/2.

The quaternion formulation of the three-dimensional Navier-Stokes shows that using

quaternions to represent the velocity field of a three-dimensional fluid system is not an

arbitrary one, but a natural one. In fact, using a quaternion representation of the Navier-

Stokes equation is in its own right a dimensionality reduction. This is because the number

of equations and variables are reduced by two thirds.

The next section describes the quaternion proper orthogonal decomposition and two of

its implementations. The first implementation directly computes the quaternion singular

value decomposition and is called the quaternion direct implementation. However, the

second implementation is indirect, and is introduced for the first time in the work of this
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thesis. The idea behind the second implementation is follows from the work of Sirovich [3]

and hence it is named the quaternion snapshot implementation.

3.3 Quaternion Proper Orthogonal Decomposition for Three-Dimensional Fluid Sys-

tem

This section, demonstrates how the quaternion proper orthogonal decomposition is applied

to three-dimensional velocity data collected from experimental measurements or numerical

simulations of fluid systems. The approach introduces quaternions into the mathematical

framework suggested by Lumley [1] in his attempt to extract coherent structures. Incorpo-

rating quaternions offers a natural extension to Lumley’s POD method that is better suited

to describe three-dimensional problems. The quaternion approach preserves the mathe-

matical framework/process suggested by Lumley for the extraction of coherent structures,

which makes this approach a generalization of Lumley’s work and not just another ma-

chine learning algorithm that is blindly applied to a large data set for the sake of feature

extraction.

In this section, two numerical implementations of the quaternion proper orthogonal

decomposition are outlined, they are:

1. Quaternion direct implementation

2. Quaternion snapshot implementation

The quaternion direct implementation is a direct computation of the QPOD on a data set,

which just like the traditional POD method, is computationally intractable for large data

sets. The quaternion snapshot implementation is an indirect implementation of the QPOD

inspired by Sirovich [3]. Both implementations of the QPOD yield the same results, but

the quaternion snapshot method is computationally tractable while the direct quaternion

method is not. This allows for the scalability of the QPOD method to large data sets as

would be encountered in modern day CFD problems.
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In section 2.3.2, the standard procedure for applying the POD method is described in

details. The process outlines how the collected flow field velocity data are arranged into

three matrices

U d =


u1

1 u2
1 . . . uN1

...
... . . .

...

u1
n u2

n . . . uNn

 , V d =


v1

1 v2
1 . . . vN1

...
... . . .

...

v1
n v2

n . . . vNn

 , W d =


w1

1 w2
1 . . . wN1

...
... . . .

...

w1
n w2

n . . . wNn

 ,
(3.52)

where Ud, V d,W d ∈ Rn×N , n represents the number of grid points, N represents the

number of snapshots (time instances where data is collected), the superscript represents

the snapshot instance, and the subscript represents the grid number. The matrices are then

concatenated to create the snapshot matrix ud, as shown in equation 2.54.

However, defining the velocity quaternion, as shown in equation 3.49, which is repeated

here

U q(x, y, z, t) = u(x, y, z, t)i + v(x, y, z, t)j + w(x, y, z, t)k, (3.53)

allows for the quaternion representation of the data collected. This is done by constructing

the quaternion snapshot matrix udq ∈ Hn×N as follows

udq =



(0, u1
1, v

1
1, w

1
1) (0, u2

1, v
2
1, w

2
1) · · · (0, uN1 , v

N
1 , w

N
1 )

(0, u1
2, v

1
2, w

1
2) (0, u2

2, v
2
2, w

2
2) · · · (0, uN2 , v

N
2 , w

N
2 )

...
... . . .

...

(0, u1
n, v

1
n, w

1
n) (0, u2

n, v
2
n, w

2
n) · · · (0, uNn , v

N
n , w

N
n )


, (3.54)

where (i, j)th entry is a single quaternion number, which represents the spatially and tem-

porally discretized flow field variables given by node i at snapshot j. The matrix udq can

also be expressed using the data matrices defined in the set of equations 3.52 as follows

udq = U di + V dj +W dk. (3.55)
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The norm of the quaternion matrix udq is given by

‖udq‖2
F = ‖U d‖2

F + ‖V d‖2
F + ‖W d‖2

F. (3.56)

Lumley defined coherent structures as solutions to the minimization problem stated in

equation 2.44. In this work, the quaternion coherent structures {φq
i}mi=1 are defined to be

the solutions to the following quaternion minimization problem

minimize
{φdq

i }m1

∥∥∥∥∥udq −
m∑
i=1

φq
i (X)aq

i (t)

∥∥∥∥∥
F

subject to ‖φq
i (X)‖F = 1, ∀i = 1, . . . ,m.

(3.57)

As stated in theorem 7, the solution to the quaternion minimization problem is given by

the rank-m approximation of udq, which is computed via the quaternion singular value

decomposition of udq, or the following eigenvalue decomposition

udqudq?φq
i (X) = φq

i (X)λq
i . (3.58)

Theorem 5 guarantees φq
i (X) are orthogonal to one another.

Currently, the quaternion proper orthogonal decomposition is implemented via the

quaternion direct implementation. In the work of this thesis, the quaternion snapshot imple-

mentation is developed in order to provide a computationally friendly approach of applying

the QPOD method to large data sets. In the next sections, the details of both implementa-

tions are presented.

3.3.1 The Quaternion Direct Method

Given an appropriate data set U d, V d,W d ∈ Rn×N , the quaternion snapshot matrix udq is

created as shown in equation 3.54 or equation 3.55. The direct implementation performs

the QPOD by taking the eigenvalue decomposition of the quaternion two point spatial cor-
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relation matrix defined as follows

Rdq =
1

N
udqudq?, (3.59)

where Rdq ∈ Hn×n. The matrix Rdq is the quaternion version of Rd ∈ R(n×3)×(n×3) which

was used to compute the POD method as outlined in section 2.3.2. Expanding the terms,

the matrix udqudq? is given by

udqudq? =

(
U di + V dj +W dk

)(
U di + V dj +W dk

)?
=
(
U dU d> + V dV d> +W dW d>

)
+
(
W dV d> − V dW d>

)
i

+
(
U dW d> −W dU d>

)
j

+
(
V dU d> − U dV d>

)
k.

(3.60)

Equation 3.60 was also verified using another approach shown in the appendix A.1.

Hence, the discretized eigenvalue problem becomes

Rdqφq
i = φq

iλ
q
i , (3.61)

and the eigenvalues and eigenvectors of the matrix Rdq are computed. The components

associated with every quaternion eigenvector can be extracted as follows

φrq
i = real (φq

i ) , (3.62)

φiq
i = imagi (φq

i ) , (3.63)

φjq
i = imagj (φq

i ) , (3.64)

φkq
i = imagk (φq

i ) . (3.65)

The eigenvectors φq
i are known as the quaternion coherent structures or the QPOD modes.
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Since the size of matrix Rdq ∈ Hn×n can be tremendously large, the eigenvalue decompo-

sition of such a matrix can be an impossible task due to computational resource limitations.

Note that the quaternion eigenvalue decomposition of udqudq? can also be stated as a

quaternion singular value decomposition of udq as follows

QSVD(uq) = QEVD(uquq?). (3.66)

This implementation of the QPOD method is named the quaternion direct implementation.

Note that the quaternion singular values of udq, will be denoted as {σq
i (u

dq)}i, and that

(σq
i (u

dq))2 = λi(u
dqudq?), ∀i = 1 . . . N . Note that udqudq? is hermitian, and theorem 3

states that the eigenvalues of a hermitian quaternion matrix are real which implies σq
i , λ

q
i ∈

R.

3.3.2 The Quaternion Snapshot Method

The quaternion direct method, which implements the QPOD, suffers from the same limita-

tions as the direct implementation of the POD. As CFD problems become more complex,

CFD grids become finer resulting in a large number of nodes. This makes the direct method

intractable as the matrix Rdq = udqudq? ∈ Rn×n is very large and performing a singular

value or eigenvalue decomposition on such a matrix is not practical due computational

resource limitations. In this section, the quaternion snapshot implementation is outlined.

Th quaternion snapshot implementation addresses the computational limitations associated

with the quaternion direct implementation, much like the snapshot implementation intro-

duced by Sirovich [3] addresses the issues associated with the direct POD implementation.

Given the quaternion snapshot matrix udq as defined in equation 3.54, consider the

quaternion right eigenvalue problem of udq?udq

udq?udqψq
i (X) = ψq

i (X)γq
i . (3.67)

81



www.manaraa.com

The superscript "q" is used to emphasize that the eigenvalues and eigenvectors are quater-

nion values and quaternion vectors. It is important to always keep that in mind since quater-

nions are non-commutative. However, udq?udq is hermitian, i.e. (udq?udq)
?

= udq?udq and

theorem 3 states that the eigenvalues of a hermitian quaternion matrix are real which im-

plies γq
i ∈ R. Multiplying udq on both sides of equation 3.67 from the left results in

udqudq?udqψq
i (X) = udqψq

i (X)γq
i . (3.68)

Regrouping and inspecting the terms leads to the desired result

(
udqudq?) (udqψq

i (X)
)︸ ︷︷ ︸

φ
q
i(X)

=
(
udqψq

i (X)
)︸ ︷︷ ︸

φ
q
i(X)

γq
i . (3.69)

where γqi = λqi .

Therefore the QPOD modes can be recovered as follows

φi = udqψi
1√
(γi)

. (3.70)

In matrix form, this is written as

Φ = udqΨΓ−
1
2 , (3.71)

where Ψ = [ψ1, . . . , ψn], and Γ is a diagonal matrix with γi along the diagonal.

The next section, outlines the work of this thesis, which investigated the use of the

quaternion proper orthogonal decomposition in the context of modal analysis and reduced-

order modeling of three-dimensional fluid systems. In addition, an investigation on the

quaternion snapshot implementation is also outlined.
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3.4 Research Contributions

The purpose of this research is to investigate the use of quaternions for the modal analy-

sis and reduced-order modeling of three dimensional fluid systems. The following list of

observations motivate the endeavor:

Observation 1. Just like complex numbers has contributed to many areas of science, evi-

dence show that quaternion numbers have also contributed to many scientific fields [105],

particularly in problems associated with three or four dimensions. This suggests that there

are potential benefits in the modal analysis and the reduced-order modeling of fluid systems

where quaternions have not been considered yet.

Observation 2. In section 3.2.1, the three dimensional incompressible Navier-Stokes equa-

tions are stated purely in terms of quaternion variables and quaternion functions only [107].

The quaternion approach treats the velocity variables (u, v, w) as a single holistic variable

which is in itself a reduction of variables. This suggests that a quaternion representation

of the fluid velocity variables is not an ad-hoc one.

Observation 3. Many existing reduced-order modeling methods are capable of approxi-

mating fluid systems. However, there is a need for methods that can better distill the physics

of fluid systems by capturing the essential dynamics present in the full-order model. Such

methods will help scientists and aircraft engineers further their understanding and intuition

of fluid flow [23].

Observation 1 motivates the investigation of using quaternions in the context of modal

analysis and reduced-order modeling of fluid systems. Observations 2 and 3 suggest that

a quaternion formulation of model-order reduction for fluid systems would be fruitful, and

would provide insights in understanding fluid flow; however there is no evidence to support

such a claim. This gap in research leads to the following research question:

Research Question. Are there any benefits associated with a quaternion approach to the
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modal analysis and reduced-order modeling of three-dimensional fluid systems?

A complete investigation of this question would require a large effort, because there are

different ways to incorporate quaternions in fluid flow [106, 107] and many more reduced-

order modeling methods. As a first step towards the stated research question, this thesis will

focus on incorporating quaternions to a benchmark method. The following observations

from the literature helps narrow down the research problem.

Observation 4. The POD is the benchmark method for the modal analysis and reduced-

order modeling of fluid systems [2, 30, 4].

Observation 5. The cross-correlation function in the POD method does not account for the

dimensionality of the spatial domain or the source of the data. George [5] suggested the

exploration of the consequences to alternative choices for the cross-correlation function.

Observation 6. The singular value decomposition applies to quaternion matrices in the

same way it applies to complex and real matrices, i.e. the quaternion singular value de-

composition generates optimal rank-m approximations of quaternion matrices [91, 89].

Observations 4 identifies the POD method as the benchmark method, while observation 5

suggests a starting point for the investigation. Moreover, observation 6 suggests that such

an endeavor is possible as the mathematical framework needed has been developed. There-

fore, the scope of this research is narrowed down and the research question is restated as:

Research Question 1. How would a quaternion approach to the POD method in the con-

text of modal analysis and reduced-order modeling of three-dimensional fluid systems com-

pare to the traditional POD method?

As previously mentioned, little attention has been devoted to the use of quaternions in

the modal analysis of fluid systems. However, the following observations provide some

evidence that will help in formulating an informed guess to research question 1.

Observation 7. The quaternion proper orthogonal decomposition has shown promising
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results in color image compression [108, 90, 109, 103, 104] and three-dimensional signal

processing of acceleration measurements [89]. These problems share a strong parallel

with reduced-order modeling of fluid systems because of the following common attributes:

1. Discretization of a spatial domain. In the case of images, a spatial discretization is

realized as a grid of pixels associated with an image. In the case of the acceleration

measurements, sensors are placed in specific locations in space. For fluid systems,

a spatial domain is discretized by generating a CFD grid or by placing sensors that

measure velocity at locations of interest.

2. Three components of information are associated with every discretized point. In the

case of color images, the components of information are the intensities of the red,

green, and blue colors associated with every pixel. In the case of the signal pro-

cessing of acceleration measurements, the components of information are the XYZ

components of acceleration (ax, ay, and az) at every location of measurement. For

fluid systems, the three components of information are the three components of ve-

locity (u, v, and w) associated with each grid node or location of measurement.

Observation 8. The QPOD has shown promising results in color image processing, even

though the color components of an image are not bound to each other under any relation-

ship. In the case for fluid systems, the velocity components relate to each other under an

explicit set of mathematical rules, the Navier-Stokes equations, which can be stated purely

in terms of quaternions.

Observations 7 and 8 suggest that a quaternion approach to the POD method (QPOD) for

three-dimensional fluid systems would be superior to the traditional POD. This leads to the

following hypothesis to research question 1:

Hypothesis 1. If a quaternion approach is used in the context of model-order reduction of

three dimensional fluid systems, then the QPOD method will out perform the traditional

POD method.
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Due to the lack of research in the literature, there is no evidence to support the main

hypothesis. Therefore a number of experiments need to be devised that would put this

hypothesis to the test.

In the work of this thesis, the quaternion velocity flow field variable is defined as shown

in equation 3.49, which is repeated here

U q(x, y, z, t) = u(x, y, z, t)i + v(x, y, z, t)j + w(x, y, z, t)k. (3.72)

Using quaternions to express the velocity flow field variables results in a fundamental

change to the POD method. However, the quaternion formulation preserves the mathe-

matical treatment and rigor used by Lumley [1] to derive the concept of coherent struc-

tures. The consequences of equation 3.72 are summarized in table 3.1, which highlights

the similarities and differences between the POD and the QPOD.
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POD QPOD

u(x, y, z, t), v(x, y, z, t), w(x, y, z, t) u(x, y, z, t)i + v(x, y, z, t)j + w(x, y, z, t)k

minimize
{φi}m1

∥∥ud −
∑m

i=1 φi(X)ai(t)
∥∥

F minimize
{φq

i}m1

∥∥udq −
∑m

i=1 φ
q
i (X)aq

i (t)
∥∥

F

subject to ‖φi(X)‖ = 1, ∀i = 1, . . . ,m. subject to ‖φq
i (X)‖ = 1, ∀i = 1, . . . ,m.

ud =

[
U d> V d> W d>

]>
∈ R(n×3)×N udq = U di + V dj +W dk ∈ Hn×N

udud>φi(X) = φi(X)λi udqudq?φq
i (X) = φq

i (X)λq
i

{λi = (σi)
2}mi=1 {λq

i = (σq
i )

2}mi=1

φui = rown
j=1 (φi)

φvi = rown×2
j=n+1 (φi)

φwi = rown×3
j=n×2+1 (φi)

φrq
i = real (φq

i )

φiq
i = imagi (φq

i )

φjq
i = imagj (φq

i )

φkq
i = imagk (φq

i )

ud
m =

∑m
i=1 φi(X)ai(t) udq

m =
∑m

i=1 φ
q
i (X)aq

i (t)

ai(t) =< φi(X) ,U(X, t) > aq
i (t) =< φq

i (X) ,U q(X, t) >

Table 3.1: A summary highlighting the similarities and differences between the POD
method and the QPOD method. Introducing quaternions at the root of the problem descrip-
tion trickles down to differences in formulation, computation, solution, and approximation.

As discussed in section 2.4, the general strategy for reduced-order modeling of fluid

systems involves two steps. In the first step, basis functions are extracted from the flow

data, this is also known as feature extraction, dimensionality reduction, or pattern recogni-

tion. When the POD algorithm is used to perform step one, the modal analysis community

named the resulting basis functions as coherent structures (POD modes). In the second

step, a reduced-order modeling technique (such as Galerkin projection, ERA, neural nets,

etc.) is used to generate the reduced-order model.

This thesis focuses on comparing the POD and the QPOD methods which are applied at

step one. The thesis does not focus on reduced-order modeling techniques typically applied

at step two. In other words, this thesis compares the coherent structures extracted via the

87



www.manaraa.com

POD against the quaternion coherent structures extracted via the QPOD. Since the coherent

structures extract information pertaining to the flow’s dynamics, coherent structures that are

richer in information and flow dynamics will consequently generate better reduced-order

models. Therefore, a first step towards a quaternion approach is undertaken by showing

that the quaternion coherent structures are superior to coherent structures. This directly

contributes to the modal analysis and reduced-order modeling of fluid systems.

Observation 9. The effectiveness of modal analysis and reduced-order modeling of fluid

systems lies in the extraction of basis functions with rich information pertaining to the

problem at hand. Creating basis functions that better capture the dynamics and the physics

of a fluid system, contributes to a more accurate modal analysis and to a superior reduced-

order modeling capability of three-dimensional fluid systems.

In order to find evidence that would test the main hypothesis, four experiments were

devised. In the first two experiments, the POD and the QPOD methods are applied to hy-

pothetical data sets. In the third and fourth experiments, the POD and the QPOD methods

are applied to two different fluid systems. However, before the experiments are described

in more details, the next section discusses the metrics that will be used to assess the perfor-

mance of each method.

3.4.1 Supporting Arguments

In this section, a number of important questions that will be used to answer research ques-

tion 1 are addressed. In order to assess if the QPOD method is better than the POD method,

it is important to develop a metric that can measure the performance of each method.

Research Question 1.1. How is the performance of each method quantified?

As stated before, the POD method computes the optimal functions {φi(X)}mi=1 that solves
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the following minimization problem

minimize
{φi}mi=1

Jm =

∥∥∥∥∥ud −
m∑
i=1

φi(X)ai(t)

∥∥∥∥∥
F

subject to ‖φi(X)‖F = 1, ∀i = 1, . . . ,m.

(3.73)

Hence, given a set of coherent structures {φi}mi=1, the following performance metric is

suggested

εr
m =

Jm
‖ud‖F

× 100,

=
‖ud −

∑m
i=1 φi(X)ai(t)‖F

‖ud‖F
× 100,

=
‖ud − ud

m‖F

‖ud‖F
× 100.

(3.74)

On the other hand, the QPOD method attempt to find a set of basis functions such that

{φq
i (X)}mi=1 solves the following minimization problem

minimize
{φq

i}mi=1

Jq
m =

∥∥∥∥∥udq −
m∑
i=1

φq
i (X)aq

i (t)

∥∥∥∥∥
F

subject to ‖φq
i (X)‖F = 1, ∀i = 1, . . . ,m.

(3.75)

Hence, given a set of quaternion coherent structures {φq
i (X)}mi=1, their performance is mea-

sured by

εq
m =

Jq
m

‖udq‖F
,

=
‖udq −

∑m
i=1 φ

q
i (X)aq

i (t)‖F

‖udq‖F
× 100,

=
‖udq − udq

m‖F

‖udq‖F
× 100.

(3.76)

This leads to the following hypothesis:

Hypothesis 1.1. The normalized errors, εr
m and εq

m, capture the performance of each
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method in approximating the original data set ud and udq respectively.

Research Question 1.2. How is the performance of each method compared to the other?

It is important to note that the matrix ud and udq contain the same data just represented

differently as highlighted in table 3.1. Moreover, equation 2.55 and equation 3.56 imply

‖ud‖F = ‖udq‖F = L, which suggests the following metric as a performance measure that

compares the two methods

εm = εr
m − εq

m (3.77)

Hypothesis 1.2. The metric εm compares the performance of the two methods.

When εm > 0, then the QPOD method out performs POD method. When εm < 0, then

the POD method out performs QPOD method.

Now that metrics that capture the performance of the POD and the QPOD methods are

established, it would be helpful to quantify how different are the POD modes compared

to the QPOD modes. One reason for finding a function that measures the extent to how

different the POD and the QPOD solutions are, is to identify situations where both methods

have the same performance (i.e. εm = 0), but the solutions (i.e. POD modes and QPOD

modes) are different. This motivates the following research question:

Research Question 1.3. How is the relationship between the POD results and the QPOD

results quantified?

The solution of the POD method is given as a set of singular values {σi}ni=1, and a set of

POD modes {φi(X)}ni=1 (coherent structures). Similarly, the solution of the QPOD method

is given as a set quaternion singular values {σq
i }ni=1 (which turn out to be real numbers as

stated in theorem 3), and a set of QPOD modes {φq
i (X)}ni=1 (quaternion coherent struc-

tures). The following quantity ‖Φ − Φq‖ seems like a reasonable suggestion that captures

the size of the difference between the POD modes and the QPOD modes. However, such

an expression is ill-posed with numerous issues, most notable is that the dimensions of Φ
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and Φq do not agree.

In 2019, Denton et al. [110] proved that the eigenvectors of a matrix can always be

computed using only the eigenvalues of the same matrix. In fact, Denton et al. provide

an explicit formula for computing the eigenvectors of a matrix from its eigenvalues. This

implies that the POD modes are in fact a function of the singular values {σ2
i = λi}ni=1.

Observation 10. The POD modes {φi(X)}ni=1 are a function of the singular values {σ2
i =

λi}ni=1 and the explicit mapping is given by

|φi,j(X)|2 =

∏n−1
k=1

(
λi(u

dud>)− λk(Mj)
)∏

k=1;k 6=i
(
λi(udud>)− λk(udud>

) (3.78)

where φi,j is the j th entry of the ith POD mode, and Mj is the (n− 1×n− 1) minor formed

by deleting the j th row and column of matrix udud>.

Hence, any change in the singular values {σi}ni=1 will reflect as a change in the POD modes.

This means that all the information associated with the POD solution is completely con-

tained with the singular values. In other words, no two solutions can have the same singular

values but different POD modes. There is very strong evidence showing that the same rela-

tionship (equation 3.78) holds for quaternion hermitian matrices as well. However, a proof

is not available in the literature.

Observation 10 indicates that any difference in the POD results and QPOD results can

be measured using only the singular values. This suggests the following distance metric

η(·) ∈ R given as the sum of the squared difference between the ordered sets of singular

values as follows

η =
n∑
i=1

(σq
i − σi)2 (3.79)
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Algebraic manipulations of equation 3.79 reveals the following

η =
n∑
i=1

(σqi − σi)
2 ,

=
n∑
i=1

(
(σqi )

2 + (σi)
2 − 2σqi σi

)
,

=
n∑
i=1

(σqi )
2 +

n∑
i=1

(σi)
2 − 2

n∑
i=1

σqi σi,

= ‖udq‖2
F + ‖ud‖2

F − 2
∑
i

σqi σi,

= 2L2 − 2
∑
i

σq
i σi.

(3.80)

The distance metric is normalized with respect to the norm of the data matrices such that

ηn =
η

2L2

= 1− 1

L2

∑
i

σq
i σi.

(3.81)

Normalizing the distance metric makes it more intuitive as 0 ≤ ηn ≤ 1, and results in a

distance metric that is independent of the amplitude of the flow field in a given data set,

which allows for the comparison of ηn to data sets with different scales. This leads to the

following hypothesis:

Hypothesis 1.3. The distance function ηn measures the difference between the information

captured in {φi(X)}ni=1 and the information captured {φq
i (X)}ni=1.

When ηn = 0, then the POD modes and the QPOD modes are the same and contain

the same information. However, larger values of ηn indicate a larger deviation between the

POD modes and the QPOD modes.
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3.4.2 Secondary Contributions

In section 2.3.2, it was noted that the snapshot method introduced by Sirovich [3] was

a key enabler for the scalability of the POD method. This is because the direct imple-

mentation of the POD requires the eigenvalue decomposition of the covariance matrix

udud> ∈ R(n×3)×(n×3), a very large matrix in modern day CFD problems. The same issue

persists with the quaternion direct implementation of the QPOD method. This is because

the quaternion direct implementation of the POD requires the eigenvalue decomposition of

udqudq? ∈ Hn×n. This leads to the following research question:

Research Question 2. Is the quaternion proper orthogonal decomposition scalable?

In section 3.3.2, the same algebraic trick introduced by Sirovich [3] was used to derive

the quaternion snapshot implementation. The snapshot method introduced by Sirovich was

a key enabler in the application of the POD method to large data sets such as the ones

encountered in modern day fluid problems.

Observation 11. The snapshot implementation developed by Sirovich contributed to the

scale-ability of the POD method.

This suggests the following hypothesis:

Hypothesis 2. If the quaternion snapshot implementation is used, then the QPOD method

is scalable.

There are two more observations worth investigating. The quaternion singular value

decomposition of a quaternion matrix udq results in the following

QSVD(udq) = ΦqΣqAq. (3.82)

where the matrix Φ is a quaternion matrix. Even though real(udq) = 0, it is not necessary

that real(Φq) = 0. This leads to the following:
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Observation 12. Every quaternion mode φq
i (X) is made up of four components instead of

three, which are its real part φrq
i (X), and its three imaginary parts φiq

i (X), φjq
i (X), and

φkq
i (X), as shown in section 3.1.

This is unexpected as there are only three components associated with every POD mode,

where every component decomposes the flow in a certain direction. This observation chal-

lenges the established understanding of coherent structures.

Moreover, it was shown in section 3.1.4 in theorem 2, that every eigenvector φq
i (X) of

a hermitian matrix belongs to an infinite set of eigenvectors, κ(λq
i ). Since a multiplication

with a quaternion is a rotation in four dimensional space, the quaternion modes can be

rotated.

Observation 13. Every QPOD mode φq
i (X), belongs to an infinite set of eigenvectors,

all of which have the same eigenvalue λq
i and relate to each other via a four-dimensional

rotation. The set is named the kaleidoscope set and is given as

κ
(
λq
i

)
= {φq

iw : w ∈ H and (λq
i , φ

q
i ) is a right eigenpair}. (3.83)

Observations 12 and 13 are a consequence of using a quaternion approach to the POD

method. These observations raise interesting questions as they are not observed in the

POD case. In the next section, the four experiments are outlined that test the validity of

hypothesis 1 and 2.

3.4.3 Experiments

With the distance metric η and the performance measure εm defined, it is possible to per-

form experiments that answer research question 1. However, providing a full answer to

research question 1 would require comparing the POD and the QPOD on thousands of

three-dimensional fluid data sets. Typically, data pertaining to fluid flow is very large.
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Hence, comparing the performances of the POD method and the QPOD method over thou-

sands of such data sets would require vast amounts of computational resources, access to

databases where the data is stored in a systematic fashion, and a lot of time. In order to

circumvent this issue, four experiments are designed.

In the first experiment a thousand hypothetical data sets are generated. Then both the

POD and the QPOD methods are applied to every randomly generated data set. The results

are then analyzed, compared, and contrasted. This experiment was done to screen for rela-

tionships, correlations, and to discover unexpected results that may stand out. Moreover, it

provides the means to describe and compare the average performance of each method.

Experiment 1. Generate a thousand data sets and apply both the POD and the QPOD

methods to each data set. Compare the distance metric η and the performance metric εm.

In the second experiment, two hypothetical data sets, data set A and data set B, are

generated using the optimization routine fmincon available in MATLAB. Data sets A and

B are generated as follows:

1. Data Set A : find matrices U d
max, V

d
max, and W d

max that maximize the distance η.

2. Data Set B : find matrices U d
min, V

d
min, and W d

min that minimizes the distance η.

The POD and the QPOD were then applied to the data sets, and the results were examined.

Experiment 2. Apply the POD and the QPOD to two special data sets, data set A and data

set B. Data set A maximize η while data set B minimizes η.

In the third experiment, the POD and the QPOD were finally applied to a data set

pertaining to a three-dimensional fluid system. The data was obtained experimentally by

Jenna Eppink [111, 112], a researcher at the NASA Langley research facility. The data set

collected consisted of three-dimensional measurements of the flow over a forward-facing

step. The measurement were taken for the purpose of understanding how excrescences

(surface imperfections) affect laminar flow and cause the flow to transition. The POD and
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the QPOD were then applied and the results were compared.

Experiment 3. Apply the POD and the QPOD on measurements obtained for a three-

dimensional flow over a forward facing step.

Finally, the fourth experiment was applied to a data set obtained via numerical simula-

tion (CFD) of the flow around a three-dimensional cylinder at different Reynolds numbers.

The data set is large, and the quaternion snapshot implementation was used to test for the

following:

1. Test the scalability of the quaternion proper orthogonal decomposition.

2. Test the performance of the POD and the QPOD methods.

3. Look for any parameter (Reynolds number) dependence in the performance of QPOD

method.

Experiment 4. Apply the POD and the QPOD via the quaternion snapshot implementation

to three-dimensional data obtained via numerical simulation of the flow around a three-

dimensional cylinder at different Reynolds numbers.

Figure 3.1 summarizes the research contributions of this thesis. Chapter 4 will describe

in details how experiments one, two, three, and four were carried out.
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Research Question 1

Research Question 2

Hypothesis 1

Hypothesis 2

Experiment 1

Experiment 2

Experiment 3

Experiment 4

Figure 3.1: Summary of the research questions, hypotheses, experiments.
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CHAPTER 4

METHODOLOGY

4.1 Experiments

The current investigation involved four experiments that compare the POD method to the

QPOD method. The following is a summary of the data sets used for each experiment:

• Experiment One: A thousand data sets were generated via a random number gener-

ator using MATLAB. The data resembles a hypothetical three-dimensional flow field

with five grid nodes observed over the span of five time steps.

• Experiment Two: Two special data sets were generated using MATLAB’s optimiza-

tion routine such that ηn is maximized for one and minimized for the other.

• Experiment Three: Stereo particle image velocimetry (SPIV) measurements for the

flow over a forward facing step in a two foot by three foot channel.

• Experiment Four: Flow around a three dimensional cylinder was simulated at dif-

ferent Reynolds numbers and the data was carefully processed, stored, and collected.

By applying the POD and the QPOD methods on a large data set, the first experiment

addresses the average performance of each method. However, in the second experiment, a

correlation identified in experiment one is confirmed. The third and fourth experiments are

used to compare the POD and the QPOD methods as they apply to fluid systems. However,

the fourth experiment serves two extra purpose. First, it tests the scalability of the QPOD

method to large data sets via the quaternion snapshot implementation (hypothesis 1). Sec-

ond, it compares the performance of the POD and QPOD methods on a data set obtained

for a three-dimensional fluid system. Moreover, experiment four also provides a means

for a preliminary analysis that explores any parametric relationship between the Reynolds
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number and the performance of each method. The next four sections address the details

pertaining to each experiment.

4.2 Experiment One

Comparing the POD and the QPOD methods to a single data set does not provide sufficient

evidence to indicate an advantage for a quaternion approach to model order reduction of

three-dimensional fluid systems. Hence, the idea behind experiment one is to apply both

methods to a large number of data sets in order to:

1. Observe the average performance of each algorithm.

2. Discover relationships, correlations, or trends.

Applying the POD and the QPOD to such a data set would require large amounts of com-

putational resources; moreover, such a data set is not readily available.

To that end, a hypothetical data set that has the attributes of a three dimensional fluid

system is created via MATLAB. The size of each data set was limited since the purpose of

this experiment is not to test the scalability of the methods. By construction, the data set

resembles a three-dimensional flow field with five grid nodes observed over the span of

five time steps. It is recognized that the size of the data being five by five seems like an

arbitrary choice, however, the effect of the data size on the performance of the methods is

not under investigation. As a preliminary attempt, the size was chosen to be small because

large data sets can be time consuming. Future research should further investigate the effect

of the data size on the performance of the methods, but that is not within the scope of this

research.

4.2.1 Experiment Details

Algorithm 1 outlines the function used to create the three data matrices (U d, V d,W d) ∈

Rn×N using MATLAB’s random number generator. By setting n = N = 5, the ma-
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trices U d, V d,W d represent the flow field variables that might have been obtained via

a hypothetical CFD grid with 5 nodes simulated for 5 time iterations. The matrix ud

and udq are created next. Every time algorithm 1 is called to create the matrices ud and

Algorithm 1: Function to create a random data set using the dimensions n and
N .

input : Number of nodes n, number of snapshots N .
output: Snapshot matrix ud, quaternion snapshot matrix udq.

Function Create Data(n, N):

while abs(norm(Ud,‘Frobenius’) - 2.88) < 0.0001 do
Ud = rand(n,N );

while abs(norm(Vd,‘Frobenius’) - 2.88) < 0.0001 do
Vd = rand(n,N );

while abs(norm(Wd,‘Frobenius’) - 2.88) < 0.0001 do
Wd = rand(n,N );

ud = [Ud;Vd;Wd];
udq = quaternion(Ud,Vd,Wd);

return ud,udq

udq, algorithm 1 guarantees that the data matrices are different and that they are balanced

(‖U d‖F ≈ ‖V d‖F ≈ ‖W d‖F ≈ 2.88). Algorithm 1 also guarantees that the one thousand

data sets generated for this experiment have very similar norms.

In order to compare the performance of the POD and the QPOD methods fairly, com-

parisons should only be done to matrices that have very similar norms to each other, this

avoids the effect of scaling as seen in the following relation

SVD(k × ud) = k × SVD(ud), (4.1)

QSVD(k × udq) = k × QSVD(udq), (4.2)

where k ∈ R is a scaling factor.

Three measures are taken to ensure that any problems that may arise due to the norm of

the randomly generated data is circumvented:
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1. The normalized distance metric ηn is used instead of η.

2. The performance measures εr
m and εq

m are used instead of J r
m and Jq

m.

3. It was observed that for a five by five randomly generated matrix using the rand

function in MATLAB, the expected norm of such a matrix is around 2.88. Therefore,

the implementation shown in pseudo-code 1 is a fast way to generate different data

sets but with similar norms.

In this fashion, any difference in results between the POD and the QPOD is narrowed down

to the difference between the methods.

After the data matrices are created, the POD methods and the QPOD method are applied

to the data. This is done one thousand times, as outlined in pseudo-code 2. The distance

metric ηn and the performance measures εr
m, ε

q
m and εm are computed.

Algorithm 2: Perform the POD and QPOD methods to a thousand data sets.

Function Main:
for i = 1 to 1000 do

[ud, udq] = Create Data (5,5);
L = norm(ud,‘Frobenius’);

[Φ,Σ, A] = SVD (ud);
[Φq,Σq, Aq] = QSVD(udq);

η(i) = 0 ;
ud

m = zeros(n× 3,N );
udq

m = quaternion(zeros(n,N ),zeros(n,N ),zeros(n,N ));
for m = 1 to 5 do

η(i) = η(i) +
(
Σq(m,m)− Σr(m,m)

)2 ;

ud
m = ud

m + Φ(:,m) ∗ Σ(m,m) ∗ A(:,m)′;
udq

m = udq
m + Φq(:,m) ∗ Σq(m,m) ∗ Aq(:,m)′;

εr(i,m) = norm(ud - ud
m,‘Frobenius’)/L*100;

εq(i,m) = norm(udq - udq
m ,‘Frobenius’)/L*100;

ηn(i) = η(i)/(2L);
ε(i, :) = εr(i, :)− εq(i, :);
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4.2.2 Sanity Check

In order to make sure that experiment one runs smoothly, a sanity check is performed. The

purpose of the sanity check is to verify that:

1. The QPOD library provided by Sangwine [100] is properly installed and functioning

as predicted.

2. Given a random data set, the POD and the QPOD methods do in fact result in different

decompositions.

Figure 4.1 shows the normalized singular values associated with the POD method and

the QPOD method plotted on a logarithmic scale for a random data set generated using the

rand function in MATLAB. The results are for U d, V d,W d ∈ R50×20.

0 5 10 15 20

10
-1

10
0

Figure 4.1: Normalized singular values a random data set demonstrating some of the dif-
ferences between the POD method and the QPOD method. The quaternion singular values
{σq

i }20
i=1 have a steeper rate of decent.
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4.3 Experiment Two

Section 3.4.1 outlines the reasoning behind the formulation of the distance metric η. The

distance metric only quantifies the extent of difference between the POD modes and the

QPOD modes, it does not compare the performance of the modes. The normalized distance

metric, equation 3.81, normalizes the distance metric, its expression is repeated here as

follows

ηn = 1− 1

L2

∑
i

σq
i σi, (4.3)

where L is the norm of the data set. By inspection, it is clear that data sets generated with

a small
∑

i σ
q
i σi have a large ηn while data sets with large

∑
i σ

q
i σi have a small ηn. This

implies that, by careful manipulation of the matrices U d, V d,W d ∈ Rn×N , it is possible to

generate data sets not randomly, but that maximizes or minimizes the distance metric, i.e.

the differences between the POD modes and the QPOD modes.

In experiment one, the POD and the QPOD methods were applied to randomly gener-

ated data sets. This experiment, applies the POD and QPOD methods to data sets obtained

in a controlled manner to test the main hypothesis 1. The first data set is carefully gener-

ated such that the differences between its coherent structures and its quaternion coherent

structures are exaggerated (η maximized). The second data set is also carefully generated

such that the differences between its coherent structures and its quaternion coherent struc-

tures are minimized (η minimized). This was made possible using MATLAB’s optimization

routine fmincon. The details are outlined next.

4.3.1 Experiment Details

In this experiment, two data sets are generated. A data set consisting of the matrices

U d
max, V

d
max,W

d
max ∈ R5×5, and a data set consisting of the matrices U d

min, V
d

min,W
d
min ∈ R5×5.

The following matrices ud
max, u

d
min ∈ R15×5 and udq

max, u
dq
min ∈ H5×5 associated with each data
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set are defined as follows

ud
max =


U d

max

V d
max

W d
max

 , ud
min =


U d

min

V d
min

W d
min

 ,
udq

max = U d
maxi + V d

maxj +W d
maxk, udq

min = U d
mini + V d

minj +W d
mink.

For the first data set, the
∑

i σ
dq
i σi is minimized, maximizing η. For the second data set,

the
∑

i σ
dq
i σi is maximized, minimizing η. In order to generate the mentioned matrices, the

fmincon optimization routine in MATLAB was used with constraint on the norm of the

data set, i.e. ‖ud‖F = ‖udq‖F = 1. In this manner, the results between the two data sets

can be compared without worrying about any scaling issues. In other terms, the constraint

enforces the following
5∑
i=1

(σi)
2 =

5∑
i=1

(σq
i )

2
= 1,

while the optimization routine attempts to find matrices U, V , and W that maximize or

minimize
∑

i σ
q
i σi.

The POD method was applied to matrices ud
max and ud

min while the QPOD method was

applied to matrices udq
max and udq

min. This results in:

1. Two sets of POD singular values, {σi(ud
max)}5

i=1 and {σi(ud
min)}5

i=1.

2. Two sets of POD modes associated with the matrices ud
max and ud

min.

3. Two sets of QPOD singular values, {σqi (udq
max)}5

i=1 and {σqi (u
dq
min)}5

i=1.

4. Two sets of QPOD modes associated with the matrices udq
max and udq

min.

The performance measures for each data set were then computed, particularly εrm, εqm, and

their difference εm.
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4.4 Experiment Three

In this experiment, the POD and QPOD direct methods are applied to a large experimen-

tal data set obtained from the NASA Langley research facility. The data set obtained is

from a series of experiments dedicated to understanding how excrescences (surface imper-

fections) affect laminar flow and cause the flow to transition. The transition process over

excrescences is complex, and in order to create more accurate, and better predictive models

of the transition, it is important to understand the underlying mechanisms that cause the

transition. Ultimately, these models would help engineers to achieve better laminar flow

control in the presence of rivets, bolts, gaps, paint, etc. Unlike experiments one and two,

in this experiment the POD and QPOD methods were applied to a set of measurements of

a fluid system.

4.4.1 Experiment Details

Eppink [111, 112] performed experiments to investigate the effects of a forward facing

step (FFS) on stationary cross-flow growth by using stereo particle image velocimetry

(SPIV) measurements. The experiment was carried out at the 2-Foot by 3-Foot Low Speed

Boundary-Layer Channel at the NASA Langley Research Center. The test section of the

tunnel is 0.61 meters high, 0.91 meters wide, and 6.1 meters long. The tunnel is a low-

disturbance facility for conducting transition experiments since in an empty test section,

the free-stream turbulence was measured to be less than 0.06% for the entire speed range,

and less than 0.05% for the speed of 26.5 m s−1.

The model is 0.91 meters wide, 2.54 meters long on the longest edge, and 12.7 mm

thick flat plat. It consists of a 0.41 meter long leading edge piece, swept at 30°, a larger

piece downstream. Figure 4.2 shows a schematic of the experimental setup. The leading

edge piece was polished to a surface finish of 0.2 µm rms, and the larger downstream piece

was polished to a surface finish of 0.4 µm rms.
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Figure 4.2: Experimental setup to measure the flow over a forward facing step at six differ-
ent stations.

To instigate stationary stream-wise cross-flow growth, a stream-wise pressure gradient

is needed, hence a three dimensional pressure body along the ceiling was designed. This

also simulates an infinite swept-wing flow within a mid span measurement region of width

0.3 meters. The ceiling liner was fabricated out of hard foam using computer-controlled

milling machining such that the Cp contours are parallel with the leading edge within the

measurement region.

The free-stream velocity was set to 26.5 m s−1 (Re′ = 1.69× 106 m−1) throughout the

whole experiment and data collection process. A single leading-edge roughness configura-

tion consisting of discrete roughness element (DREs) with a diameter of 4.4 mm was used.

The DREs were configured with a span-wise spacing, λz, of 11 mm and an approximate

thickness of 20 µm. More details on the experimental setup can be found in the reference

by Eppink [113].

A high-speed double-pulsed ND:YLF laser provided the laser sheet for the PIV mea-

surements. The laser was setup such that the laser sheet is parallel to the leading edge and

the forward-facing step By placing two high-speed 4-megapixel cameras downstream of the
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step, time-resolved PIV (TRIPV) measurements were acquired. Using the apparatus in the

configuration described and shown in Figure 4.2, the total possible measurement area came

out to 60 mm × 30 mm, which was reduced for the majority of measurements to 15 mm ×

6 mm at an acquisition rate of 8 kHz. The cameras and laser were all mounted on a travers-

ing system, which allows for measurements at multiple locations. The data is acquired

at multiple stations, starting at or shortly downstream of the step, moving downstream at

approximately 3 mm increments. 6000 image pairs were acquired at each station.

4.4.2 Data Processing

Using the experimental setup described, the data was carefully collected and stored. Six

data sets were collected at different downstream locations. The data sets were labeled

according to their station number, which increases further downstream from the step. The

data for each station was imported into MATLAB. For each station, the data collected reflects

the u, v, w velocities of the flow with 129× 28 data points per snapshot (n = 3, 612) and a

total of 6,000 snapshots (N = 6, 000). Hence, for each data set, the matrices ud ∈ R3n×N

and udq ∈ Hn×N were created. The POD and the QPOD method was then applied to

each matrix ud and udq respectively; the normalized distance metric and the performance

measures were computed.

Typically, in POD applications, the number of data points n per snapshot is much larger

than the number of snapshots, N . However, in this case, the number of snapshots is larger

than the number of data points per snapshot, i.e. N > n. Therefore, it is more numerically

efficient to apply the direct implementations of the POD and the QPOD methods.

4.5 Experiment Four

As mentioned before, the quaternion POD method becomes computationally infeasible

when the dimensionality of the data set becomes large. This is typically the case for

average-sized CFD grids, where the number of nodes is in the order of millions. The
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proposed quaternion snapshot method is an implementation of the quaternion POD that en-

ables scientist and engineers to perform the QPOD on data sets where the number of nodes

is much larger than the number of snapshots. In order to demonstrate a typical modern

day situation where the QPOD method would be used, a CFD grid for a three-dimensional

cylinder was chosen. The flow around a 3D cylinder is a canonical problem in the fluid

flow community that has been used to demonstrate a variety of fluid flow phenomenons

and data analysis techniques. Even though the 3D cylinder has a simple geometry, the flow

around it can be very rich. The 3D cylinder exhibits a variety of parameter-dependent fluid

flow phenomena that has been verified mathematically, experimentally, and numerically,

elevating it to a benchmark problem.

The most notable phenomena is the Reynolds number dependent bifurcations that oc-

cur as the flow transitions from laminar to turbulent. At low Reynolds numbers, below 46,

the flow is asymptotically stable, two dimensional, and tends towards a fixed point [114].

An example of how the steady state solution looks like for Reynolds number 35 is shown

in figure 5.15. As the Reynolds number increases beyond the critical Reynolds number

Rec ≈ 46, the asymptotically stable fixed point mentioned becomes unstable and the so-

lution tends towards a stable, periodic, two dimensional attractor due to a phenomenon

known as Hopf bifurcation. This forms a periodic, two dimensional flow, widely known as

the Benard-Von Karmen vortex Street [115]. Figure 5.17 shows a snapshot of the Benard-

Von Karmen vortex street at Reynolds number 120. The flow is two dimensional due to

span-wise translational symmetry along the cylinder. As the Reynolds number increases

beyond 188, a supercritical Hopf bifurcation occurs due to span wise instability. The span-

wise instability develops, causing the flow behind the cylinder to become completely three

dimensional and periodic [116, 117, 118]. A typical feature of this flow is the development

of stream-wise vorticities.

As the Reynolds number keeps increasing, the flow around the three dimensional cylin-

der continues to bifurcate in a sequence of period doubling that ultimately transitions to
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chaotic flow observing the universal scaling laws of nonlinear chaotic dynamical sys-

tems [119, 120]. The cascade of period doubling bifurcations has been experimentally

documented [117], and numerically investigated through direct numerical simulations of

the Navier-Stokes equations [121, 120, 114, 122, 123]. While most experimental and nu-

merical investigations were done for an unconfined cylinder, Kanaris et al. [124] have nu-

merically investigated the confined three dimensional cylinder case.

The simple geometry, and the richness of parameter dependent phenomena, has made

the three-dimensional cylinder appealing to many scientist and engineers. Over the years,

the three-dimensional cylinder has become a benchmark problem in the reduced-order

modeling community. Model order reduction algorithms seek to capture the rich dynamics

of the wake behind the three dimensional cylinder using the lowest order models possible.

The accuracy, stability, and adaptability are a few properties that have been investigated for

the resulting reduced order models of the three dimensional cylinder. The POD had a great

influence in this field and until this day remains a standard tool in creating reduced-order

models of the three dimensional cylinder.

In 1991, Deane et al. [125], used the POD to create a reduced order model for the flow

around a two dimensional cylinder. One of the first models to create a reduced order model

of the three dimensional cylinder by utilizing POD modes and Galerkin projection methods

was created by Noack and Eckelmann [126] in 1994. Many other contributions have been

added to the creation of low dimensional models of the wake behind the three dimensional

cylinder [121, 120, 127]. Low dimensional models of the three dimensional cylinder have

also been utilized in flow control [55, 56]. The literature on this topic is vast and outside

the scope of this thesis.

In order to generate a computational model of the three dimensional cylinder that cap-

tures the mentioned phenomena, a CFD grid with a large number of nodes was created.

The model is then run on NASA’s super computer, known as the K-Cluster, at different

Reynolds numbers. The resulting data sets were then carefully prepared; the POD method
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and the QPOD method were applied.

This experiment applies both the POD and the QPOD to the flow around a three di-

mensional cylinder at different Reynolds numbers. The snapshot implementation was used

to implement the POD method, and the quaternion snapshot implementation was used to

implement QPOD method. The results of this experiment will show whether the QPOD

is scalable, compare the performance of the POD and the QPOD methods, and uncover

any parameter dependence of each method at different Reynolds numbers. The aim of this

experiment is to test hypotheses 1 and 2.

4.5.1 Grid Generation

A two dimensional, unstructured grid is first generated in pointwise with 18,775 nodes, as

seen in figure 4.3a. The mesh refinement is higher around the cylinder to better capture the

flow dynamics in the vicinity of the cylinder. The XZ axes are centered at the center of the

cylinder with non-dimensional radius of 1. The X-axis is aligned with the oncoming flow

and the Z-axis is perpendicular to the free stream velocity. The grid is then extruded in the

Y direction 120 times with a spacing of 0.1 resulting in a three dimensional mesh with 121

layers, a cylinder with span-wise non-dimensional length of 12, and 2,271,775 nodes. The

final mesh can be seen in figure 4.3b.

4.5.2 Numerical Method, Boundary Conditions and Simulations

The generated grid is then used with FUN3D, a flow solver, to simulate the flow at dif-

ferent Reynolds numbers. FUN3D [128] is an unstructured node-centered finite-volume

solver developed in 1994 and continues to undergo development by NASA. Details of

FUN3D including manuals, papers and supporting materials can be found on its official

web page [129]. The governing equations used are the viscous incompressible Navier-

Stokes equations and the incompressible solver is based on the method of artificial com-

pressibility [130]. FUN3D uses an optimized second-order backwards difference formula-
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(a) Side view of the CFD grid. View aligned
with the Y-axis showing the XZ plane.

(b) View showing three dimensional geometry
of the CFD grid.

Figure 4.3: CFD mesh

tion [131] with dual time-stepping [132]. The non dimensional time step is set to 0.01 with

30 sub-iterations used to converge the dual time-stepping residual.

Viscous and no-slip boundary conditions are imposed on the cylinder with an ex-

ternal flow over the cylinder with span-wise periodicity enforced. Five simulations are

ran at different Reynolds numbers. The Reynolds numbers are chosen at different flow

regimes in order to capture some of the Reynolds number dependent dynamics described

by Williamson [117]. The specific Reynolds numbers chosen are 35, 120, 240, 300, and

600.

4.5.3 Data Processing

After the simulations are ran, the velocity flow field variables are imported into MATLAB.

Since the dimensionality of the problem is large, applying the POD and the QPOD can be

computationally demanding. In this case, the number of nodes n is equal to 2,271,775,

while the number of snapshots, N , is 1000 at most. This makes the matrix ud ∈ R3n×N and

udq ∈ Hn×N .

Computing the POD modes via the direct method involves performing the eigenvalue
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decomposition on ud(ud)>, which now is a much bigger matrix with 3n rows and 3n

columns. Similarly, computing the QPOD modes via the direct method involves per-

forming the eigenvalue decomposition on udq(udq)> which has n rows and n columns.

udq(udq)? ∈ Hn×n.

Hence, the snapshot POD and the snapshot QPOD implementations are used instead.

After the POD and QPOD are applied to the data, the results are stored and compared.

4.5.4 Sanity Check

Before using the snapshot implementation of the QPOD method on a large data set, the

quaternion snapshot implementation is validated on a small data set. Figure 4.4 plots the

quaternion singular values obtained using:

1. Quaternion direct implementation

2. Quaternion snapshot implementation

where the QPOD method is applied to a quaternion matrix udq ∈ H5×5. The components

of udq are can be found in the appendix. Upon comparison, the quaternion singular values

obtained using the quaternion direct implementation are found to be exactly the same as

the quaternion singular values obtained using the quaternion snapshot implementation, i.e.

σDirect
i = σSnap

i , ∀i = 1, . . . , 5. The quaternion singular values can be seen in figure 4.4

which plots {σDirect
i }5

i=1 and {σSnap
i }5

i=1.

However, upon inspecting the modes of each implementation, it is clear that the modes

are not the same, even though the singular values of both implementations are the same.

The first two modes, associated with the first two singular values, of each implementation
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Figure 4.4: Plot shows the quaternion singular values of udqudq? and udq?udq in perfect
agreement.
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are listed below

φDirect
1 =



0.09 + 0.06i− 0.10j − 0.18k

0.12 + 0.18i− 0.39j − 0.33k

−0.02 + 0.06i− 0.16j − 0.02k

−0.08− 0.37i + 0.50j + 0.41k

0.10 + 0.04i + 0.05j − 0.18k


, φDirect

2 =



0.06− 0.17i− 0.24j − 0.15k

0.09− 0.27i + 0.06j − 0.34k

−0.02 + 0.02i + 0.34j − 0.06k

−0.06− 0.31i− 0.05j − 0.25k

0.07− 0.08i− 0.62j + 0.05k



φSnap
1 =



0.00 + 0.17i + 0.01j + 0.42k

0.00− 0.24i + 0.38j + 0.38k

0.01− 0.02i + 0.25j − 0.25k

−0.01− 0.15i + 0.05j − 0.19k

−0.00− 0.05i− 0.31j − 0.41k


, φSnap

2 =



−0.02− 0.29i− 0.12j − 0.20k

0.06− 0.15i + 0.02j + 0.24k

0.09− 0.22i + 0.40j − 0.29k

−0.08 + 0.54i− 0.17j + 0.02k

0.05− 0.24i− 0.08j + 0.29k


By examining the entries of the vectors, it is clear that the resulting modes are not the same

(φDirect
i = φSnap

i , i = 1, 2), even though the eigenvalues are the same (λDirect
i = λSnap

i , i =

1, 2). This results is unexpected as both implementations should yield the same set of

modes.

In order to verify which implementation produces the correct QPOD modes, recall that

the modes are actually eigenvectors that satisfy the following relationship

udqudq?φq
i = φq

iλ
q
i . (4.4)

Therefore, the eigenvalue-eigenvector relationship mentioned above is tested for the modes

obtained via the direct implementation and for the modes obtained via the quaternion snap-

shot implementation. Using MATLAB, both of the following equations were satisfied,

(
udqudq?)φDirect

i − φDirect
i λq

i = 0, ∀i = 1 . . . 5, (4.5)(
udqudq?)φSnap

i − φSnap
i λq

i = 0, ∀i = 1 . . . 5. (4.6)

114



www.manaraa.com

Therefore, both sets of vectors {φDirect
i }5

i=1 and {φSnap
i }5

i=1 satisfy equation 4.4. Hence, by

definition {φDirect
i }5

i=1 and {φSnap
i }5

i=1 are QPOD modes of udq, which seems puzzling.

The answer to the puzzle can be found in quaternion matrix algebra. Equation 4.5 shows

that (λq
i , φ

Direct
i ) is an eigenpair of udqudq?, and equation 4.6 also shows that (λq

i , φ
Snap
i ) is an

eigenpair of udqudq?. Therefore, both φDirect
i and φSnap

i belong to the same kaleidoscope set

κ(λq
i ), where

κ(λq
i ) =

{
q ∈ Hn : q = φqw,w ∈ H, w 6= 0

}
. (4.7)

Consequently, for quaternion hermitian matrices such as udqudq?, the vectors φDirect
i and

φSnap
i are both eigenvectors and belong to the same class of eigenvectors. By theorem 4,

this means that for all i = 1 . . . 5, there exists a unit quaternion wrot ∈ H, where ‖wrot‖ = 1,

such that

φDirect
i = φSnap

i wrot. (4.8)

In fact there are infinitely many eigenvectors associated with every eigenvalue λq
i . As long

as the eigenvectors are multiplied by a unit quaternion, the result is also an eigenvector

that belongs to the same class of eigenvectors. Since multiplying by a unit quaternion is

equivalent to rotation in four dimensional space, this means that all the eigenvector are

equivalent up to four dimensional rotations of their entries.
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CHAPTER 5

RESULTS AND DISCUSSION

In chapter 2, the aim of this thesis was stated as follows:

Research Objective. Explore the use of quaternions in the context of modal analysis and

reduced-order modeling of three-dimensional fluid systems.

In chapter 3, the quaternion proper orthogonal decomposition was shown to yield promis-

ing results in the fields of color image compression [90] and signal processing [89]. How-

ever, little attention has been paid to application of the quaternion proper orthogonal de-

composition to three dimensional fluid systems. This motivated the main research question

(research question 1) of this thesis

Research Question 1. How would a quaternion approach to the POD method in the con-

text of modal analysis and reduced-order modeling of three-dimensional fluid systems com-

pare to the traditional POD method?

In chapter 4, four experiments that compare the POD method and the QPOD method

were thoroughly formulated with the purpose of answering research question 1; the ex-

periments were then carefully conducted. However, just like the POD method, the direct

implementation of the QPOD method also suffers from the lack of scalability. Hence, the

quaternion snapshot implementation was devised as a means to apply the QPOD method

to large data sets, such as the ones encountered in experiment four. This led to research

question 2 restated here as follows:

Research Question 2. Is the quaternion proper orthogonal decomposition scalable?

The present chapter has two sections. The first section presents and discusses the results

of these four experiments. The second section discusses some mathematical observations
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that can help explain why those results might have occurred.

5.1 Experiments

The theme of this section relies on applying the POD method and the QPOD method to

different data sets. In experiment one and two, the data sets (U d, V d,W d ∈ R5×5) were

generated either randomly or via an optimization routine. The random generation of many

but small data sets in experiment one allowed for the comparison between the average

performance of the two methods, and helped in revealing important trends.

In experiment three and four, the methods were applied to data sets pertaining to three-

dimensional fluid systems. These experiments serve to show case the QPOD method as

it applies to fluid systems, and compares the performance between POD method and the

QPOD method.

In every one of the four experiments, a data set U d, V d,W d ∈ Rn×N was used to create

the snapshot matrix ud ∈ R(n×3)×N and the quaternion snapshot matrix udq ∈ Hn×N , where

n is the number of data points per snapshot, and N is the total number of snapshots. The

POD method and the QPOD method were applied to data matrix ud and udq, respectively.

The results of the process described is summarized as follows:

• The traditional POD method applied to the snapshot matrix, ud, resulted in:

1. POD modes, {φi(X)}mi=1, also known as coherent structures.

2. Singular values associated with each mode, {σi}mi=1.

• The quaternion POD method applied to the quaternion snapshot matrix, udq, resulted

in:

1. QPOD modes, {φqi (X)}mi=1, defined as quaternion coherent structures.

2. Quaternion singular values associated with each quaternion mode, {σqi }mi=1.
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By comparing the modes, singular values, and computing the distance metric (η) and

performance measures (εr
m, ε

q
m, εm), the POD method is compared to the QPOD method.

In addition, experiment four utilized the quaternion snapshot implementation of the QPOD

method, which was applied at different Reynolds numbers.

5.1.1 Experiment One

Using MATLAB, a thousand U d matrices, a thousand V d matrices, and a thousand W d

matrices were generated, as outlined in algorithm 1. The dimension of each generated

matrix was chosen to be five by five, U d, V d,W d ∈ R5×5. Such a data set represents a

hypothetical flow where the flow field variables would be extracted from a grid with five

nodes over the period of five time iterations. Table 5.1 shows that even though the matrices

mean norm std norm
U d 2.88 5.80× 10−5

V d 2.88 5.80× 10−5

W d 2.88 5.85× 10−5

ud 4.99 5.82× 10−5

udq 4.99 5.82× 10−5

Table 5.1: Statistics on the randomly generated matrices. The first three rows show the
statistics associated with the one thousand randomly generated matrices. The first column
is the mean of the Frobenius norm’s, while the second column represents the standard
deviation of the norms.

were randomly generated, careful attention was given to the process of generating them.

The norm of the norm of a randomly generated data set is given by

L = ‖ud‖F = ‖udq‖F. (5.1)

Table 5.1 shows that algorithm 1 consistently generated data sets with very similar norms,

L ≈ 4.99, due to the negligible variability of the norm among the data sets.

Using the data sets generated, the snapshot matrices ud (defined by equation 2.54), and

the quaternion snapshot matrices udq (defined by equation 3.54) were created. The POD
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method was applied to every snapshot matrix ud, while the QPOD method was applied to

every quaternion snapshot matrix udq. Therefore, for each and every data set, this resulted

in a set of singular values {σi}5
i=1 and a set quaternion singular values {σq

i }5
i=1, which were

used to compute the normalized distance metric, as given in equation 3.81. The normalized

distance metric computed was sorted and plotted. Figure 5.1 shows the result. It is clear

0 500 1000

0

0.006

0.014

0.02

n

Figure 5.1: Plot shows the normalized distance metric ηn (equation 3.81) computed for a
thousand randomly generated data sets. The ηn values were sorted before they were plotted.

from figure 5.1 that for some data sets, the POD and QPOD methods produce identical

singular values σi = σq
i , i = 1, . . . , 5, and consequently, identical decompositions, φi =

φq
i , i = 1, . . . , 5. However, figure 5.1 also shows that the POD and the QPOD generally

produce different results.

Observation 14. The difference in results between the POD method and the QPOD method,

as captured by the distance metric ηn, varies across a spectrum.

The next step is to compare the performance of the two methods. The performance of

the two methods is captured via the performance metric εr
m and εq

m. These metrics measure
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the ability of the POD modes to approximate the original data set ud, and the ability of the

QPOD modes to approximate the same data set in its quaternion representation udq.

The POD modes and the QPOD modes were used to create approximations of the orig-

inal data. Four approximations are computed for each data set as follows

ud
m =

m∑
i=1

φiai, m = 1, . . . , 4, (5.2)

udq
m =

m∑
i=1

φq
ia

q
i , m = 1, . . . , 4. (5.3)

Each approximation was incrementally enriched by adding an extra mode, resulting in four

approximations per method per data set. The error associated with each approximation was

computed for each data set and plotted. The results can be seen in figure 5.2. The red

dots show the performance metric εr
m associated with the POD method, while the blue dots

show the error associated with the QPOD, εr
m. The gray line shows the difference between

the two errors, εm = εr
m − εq

m.

It is evident from the plots that the QPOD always outperforms the POD method, be-

cause εm = εri − εqi ≥ 0, i = 1, . . . , 4. Moreover, when more modes are added to the

approximations ud and udq, then εm increases. This implies that the QPOD approximations

converge faster to the original data set than the POD approximations. These observations

are summarized, as follows

Observation 15. The performance metric εm was greater than zero, for all m = 1, . . . , 4,

and for all randomly generated data sets. Therefore, without exception, the approximations

udq
m created via the QPOD method performed better than the approximations ud

m created

via the POD method.

Observation 16. When more modes were used to create the approximations ud
m and udq

m ,

the performance metric εm increased. This indicates that the difference between the QPOD

approximations udq and the POD approximations ud becomes more pronounced when more

120



www.manaraa.com

0 500 1000

0

15

30

45

60

(a) Plot of performance metrics εr
1, ε

q
1, and ε1,

for a thousand randomly generated data sets,
which compares the ability of ud

1 and udq
1 to ap-

proximate the original data set with one mode.
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(b) Plot of performance metrics εr
2, ε

q
2, and ε2,

for a thousand randomly generated data sets,
which compares the ability of ud

2 and udq
2 to ap-

proximate the original data set with two modes.
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(c) Plot of performance metrics εr
3, ε

q
3, and ε3,

for a thousand randomly generated data sets,
which compares the ability of ud

3 and u
dq
3 to

approximate the original data set with three
modes.
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(d) Plot of performance metrics εr
4, ε

q
4, and ε4,

for a thousand randomly generated data sets,
which compares the ability of ud

4 and udq
4 to ap-

proximate the original data set with four modes.

Figure 5.2: Comparison of QPOD performance vs POD performance over one thousand
randomly generated data sets. The solid lines represent the average errors. The gray line
shows the difference between the two errors, εm = εrm − εqm. Note that the QPOD always
outperforms the POD.
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Figure 5.3: The performance metrics εrm, εqm, and their difference εm averaged over a thou-
sand data sets plotted against the number of modes m used to create the approximations.

modes are added.

The results of figure 5.2 are summarized in figure 5.3. In figure 5.3, the average error

using the POD method εrm, the average error using the QPOD method εqm, and the average

difference of error between the methods εm, are all plotted against the number of modes

m used to create the approximations ud
m, u

dq
m . This indicates that the difference between

the average performances between the QPOD method and the POD method becomes more

pronounced as the number of modes used to create the approximations increases.

When the performance metrics εm, εr
m, and εq

m, were plotted against the normalized

distance metric ηn, a strong correlation between those variables was discovered. Figure 5.4,

contains four sub-figures Every sub-figure shows how the performance metrics vary with

the normalized distance metric, and how those variations change as more modes are used to

create the rank-m approximations. The following observations are drawn from figure 5.4.

Observation 17. When ηn increases, the error εr
m also increases. This indicates that the

POD method performs more poorly for data sets with larger values ηn.

Observation 18. When more modes are used (larger values ofm) to create approximations
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(a) Comparison of POD error vs QPOD error
when creating a ROM using the first mode.
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(b) Comparison of POD error vs QPOD er-
ror when creating a ROM using the first two
modes.
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(c) Comparison of POD error vs QPOD error
when creating a ROM using the three modes.
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(d) Comparison of POD error vs QPOD error
when creating a ROM using the four modes.

Figure 5.4: Comparison of POD error vs QPOD error as defined by equations 3.74 and 3.76
respectively over one thousand randomly generated data sets. The solid lines represent the
best fit line of each respective error. The gray plot shows the difference between the two
errors as defined by equation 3.77. Note that the QPOD always outperforms the POD.
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ud
m, the correlation between ηn and the error εr

m becomes stronger. This indicates that for

larger values ηn, the performance of the POD method in approximating the original data

set further deteriorates when more modes are used.

Observation 19. When ηn increases, the error εq
m decreases. This indicates that the QPOD

method performs better for data sets with larger values ηn.

Observation 20. As the number of modes used (larger values of m) to create approxima-

tions udq
m , the correlation between the distance metric ηn and the error εq

m becomes stronger

in the negative direction. This indicates that for larger values ηn, the performance of the

QPOD method in approximating the original data set is further enhanced when more modes

are used.

Observation 21. The difference in performance between the POD and the QPOD methods

(captured by εm), becomes more pronounced when:

1. Data sets have larger ηn.

2. Additional modes are used to create approximations.

Figure 5.4a shows hardly any correlation between the errors and the distance metric

η. This is due to the fact that the first mode is also average mode when the data is not

centered, which is the case here. However, when approximations ud
1, u

dq
1 were created using

the average mode, without exception, εr
1 ≥ εq

1. This is surprising as it was verified that both

the POD method and the QPOD method produced φ1 and φq
1 that are the equivalent to each

other (the first mode is the average of the data set when the data set is not centered).

Observation 22. For all data sets, ε1 > 0; even though φ1 = φq
1.
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5.1.2 Experiment Two

In this experiment, two hypothetical data sets, data set A and data set B, are generated

using the optimization routine fmincon available in MATLAB. Data sets A and B were

generated as follows:

1. Data Set A : matrices U d
max, V

d
max, and W d

max maximize the distance η.

2. Data Set B : matrices U d
min, V

d
min, and W d

min minimizes the distance η.

A norm constraint was applied to both data sets such ‖U d‖2
F + ‖V d‖2

F + ‖W d‖2
F = 1. This

process did not guarantee a globally optimal solution, only a locally optimal one.

With regards to data set A, the exact values of the matrices U d
max, V

d
max,W

d
max ∈ R5×5

generated can be found in the appendix B. In this data set, the following quantity
∑5

i=1 σ
q
i σi

was found to be equal to 0.6316. Since the norm of the data set was constrained to one,

‖ud
max‖F = ‖udq

max‖F = 1 , the distance metric was computed as shown in equation 3.80, as

follows

ηmax = ‖udq
max‖2

F + ‖ud
max‖2

F − 2
5∑
i=1

σq
i (u

dq
max)σi(u

d
max),

= 1 + 1− 2× 0.6316,

= 0.7369,

(5.4)

and the normalized distance metric was computed as follows

ηn,max =
ηmax

2
= 0.3684. (5.5)

The same process is repeated for the generation of the second data set, U d
min, V

d
min,W

d
min ∈

R5×5, except this time the optimizer was set to maximize the following quantity
∑5

i=1 σ
q
i σi,

which came out to be exactly 1. The exact values of the matrices U d
min, V

d
min,W

d
min ∈ R5×5
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generated can be found in the appendix B. The distance metric was computed as follows

ηmin = ‖udq
min‖2

F + ‖ud
min‖2

F − 2
5∑
i=1

σq
i (u

dq
min)σi(u

d
min),

= 1 + 1− 2× 1,

= 0.

(5.6)

The normalized distance metric is then equal to

ηn,min =
ηmin

2
= 0. (5.7)

Figure 5.5a shows the singular values {σi(ud
max)}5

i=1 and the quaternion singular values

{σq
i (u

dq
max)}5

i=1 associated with data set A, i.e. U d
max, V

d
max,W

d
max ∈ R5×5 generated such that

η is maximized. Figure 5.5b shows the singular values {σi(ud
min)}5

i=1 and the quaternion

singular values {σq
i (u

dq
min)}5

i=1 associated with data set B, i.e. U d
min, V

d
min,W

d
min ∈ R5×5

generated such that η is minimized. The following observations are made:

Observation 23. In data set A, figure 5.5a shows that the rate of decent associated with the

quaternion singular values {σi(ud
max)}5

i=1 is very steep. Moreover, the last three quaternion

singular values are all zero. However, the singular values {σi(ud
min)}5

i=1 do not descend at

all. This indicates that the POD method was unable to find any pattern in data set A.

Observation 24. In data set B, the singular values of both methods exactly coincide, i.e.

σi = σq
i , ∀i = 1, . . . , 5.

After the POD and QPOD methods were applied to data sets A and B, approximations

of each data set were created. Subsequently, the normalized errors associated with each

rank-m order approximation was computed. Figure 5.5c reveals an outstanding perfor-

mance of the QPOD method when compared to the POD method for data set A. However,

figure 5.5d reveals that for data set B, both methods had exactly the same performance.
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(a) Singular values of the POD method,
{σi(ud

max)}5i=1, and the singular values of the
QPOD method, {σqi (u

dq
max)}5i=1, shown for data

set A where η = ηmax.

Data Set B
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(b) Singular values of the POD method,
{σi(ud

min)}5i=1, and the singular values of the
QPOD method, {σqi (u

dq
min)}5i=1, shown for data

set B where η = ηmin.
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(c) Reduced order model errors for the POD
method and the QPOD method vs the num-
ber of modes used to create the reduced order
model. The results shown are for the data set A
where the distance metric is maximized.
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(d) Reduced order model errors for the POD
method and the QPOD method vs the num-
ber of modes used to create the reduced order
model. The results shown are for the data set B
where the distance metric is minimized.

Figure 5.5: The two figures in the left column demonstrate the results for data set A where
η = ηmax while the two figure in the right column demonstrate the results for data set B
where η = ηmin.
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The following observations summarize the findings illustrated in figure 5.5:

Observation 25. For data set A, the error εq
m is much smaller than εr

m for all m.

Observation 26. For data set A, only two QPOD modes were required to reconstruct the

entire data set, while all five POD modes were required to accomplish the same task.

Observation 27. For data set B, the POD and the QPOD produce the same singular values

and the same modes and hence both methods have equivalent performance.

5.1.3 Experiment Three

The purpose of this experiment was to test hypothesis 1 by applying the POD method and

the QPOD method to a data set pertaining to a three-dimensional fluid system. As outlined

in the methodology, this experiment applied the POD method and the QPOD method to

six data sets obtained using stereo particle image velocimetry (SPIV) measurements for

the flow over a forward facing step. The measurements were taken at six different stations

downstream of the forward facing step.

Figure 5.6 shows the proposed flow, as suggested by Eppink [112]. According to Ep-

Figure 5.6: Proposed flow over a forward facing step as suggested by Eppink [112].
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pink [112], the forward facing step causes the flow to separate resulting in two-dimensional

separation bubbles. At the same time, the stationary cross flow introduces a modulation to

the two-dimensional separation bubbles causing them to become three-dimensional. Con-

sequently, the flow becomes three-dimensional which results in the formation of vortices,

some of which exhibit complex vortex shedding. Figure 5.6 shows the primary vortex, vor-

tex 1, which begins in the span-wise direction and evolves downstream into vortex 3a. Even

further downstream vortex 3a turns into vortex 5a and 5b which are are oriented stream-

wise However, figure 5.6 also shows vortex 6, which is a stationary vortex that interacts

with the shedded vortex, vortex 3c.

The first result of this experiment is a qualitative comparison of the singular values

resulting from applying the POD and QPOD methods at each station. Figure 5.7 shows the

POD singular values, {σi(ud)}i, and the QPOD singular values, {σq
i (u

dq)}i, at each station.

Looking at the plots in figure 5.7, it was observed that the QPOD singular values descend

faster than the POD singular values.

Observation 28. The QPOD singular values descend more rapidly than their POD coun-

terpart. This is observed at all six stations.

The resulting singular values at each station were then used to compute the normalized

distance metric. Figure 5.8 shows the computed normalized distance metric at each station.

The normalized distance metric scores were found to be rather low since ηn was in the

order of 10−4 at all stations. Figure 5.8 shows that the normalized distance metric tends to

increase downstream, but not by a significant amount.

Observation 29. As the flow evolved downstream, the normalized distance metric ηn in-

creased. An increase in ηn indicates a greater divergence between the POD results and

QPOD results. It is also interesting to note that the flow becomes more turbulent as it

evolves downstream.

Before the performance metrics were computed, a detailed inspection of the results
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Figure 5.7: Normalized singular values of the QPOD method and the normalized singular
values of the POD method plotted at each station downstream of the forward facing step.
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Figure 5.8: Normalized distance metric computed for the six different data sets. Each data
set is collected at a different location downstream of the flow. The normalized distance
metric between the POD method and the QPOD method is computed for each data set. The
data sets are labeled according to their station number which increases further downstream
of the forward facing step.

131



www.manaraa.com

revealed that the mean of the flow contributes to 95% of the flow. Therefore, without

any loss to the original aim of this investigation, the performance metrics were slightly

modified such that more emphasis is given to the ability of the methods to approximate the

fluctuations of the flow. The fluctuation errors are denoted by ε̃r
m, ε̃

q
m, and ε̃m and were used

instead of the previously established errors εr
m, ε

q
m, and εm. In this manner, a better contrast

between the POD and the QPOD is established. By comparing the ability of each method

to reconstruct deviations of the flow from the mean, i.e. comparing the fluctuation errors,

the magnitude of th mean and its effects are muted from the analysis. The POD fluctuation

error is defined as

ε̃r
m =

‖ud − ūd −
∑m

i=2 φi(X)ai‖
‖ud − ūd‖

× 100, (5.8)

where ūd = E(ud) is the average over all snapshots. Since the data is not centered, the first

mode is the normalized average (φ1 = ūd/‖ūd‖F), therefore the POD fluctuation error can

be restated as

ε̃r
m =

‖ud −
∑m

i=1 φi(X)ai‖
‖ud − ūd‖

× 100

=
‖ud − ud

m‖
‖ud − ūd‖

× 100.

(5.9)

By following the same steps, an expression for the QPOD fluctuation error is given by

ε̃q
m =

‖udq −
∑m

i=1 φ
q
i (X)aq

i‖
‖udq − ūdq‖

× 100

=
‖udq − udq

m‖
‖udq − ūdq‖

× 100.

(5.10)

Figure 5.9, shows the fluctuation errors associated with the POD and QPOD methods plot-

ted against the number of modes used to create the approximations. It is clear from fig-

ure 5.9 that the QPOD method was superior to the POD method at every station.

Observation 30. Without exception, at every station, the QPOD method produced better

approximations of the flow fluctuations than the POD method.
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Figure 5.9: The fluctuation error associated with the POD method, ε̃r
m, and the fluctuation

error associated with QPOD method, ε̃q
m, for the flow over a forward facing step.
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Observation 31. On average, the QPOD method resulted in 20% fluctuation error using

approximately one thousand less modes than the POD method. This can be seen by drawing

a horizontal line at the 20% mark in the plots shown in figure 5.9.

Mode visualization

Visualizing the POD and QPOD modes helps in identifying patterns that might help explain

the evolution of the flow over time. In fact, the POD method was derived by Lumley [1] for

the purpose of extracting flow patterns. In this section, the POD and QPOD modes were

visualized and compared. This was done in order to compare the capabilities of the POD

and QPOD methods to extract meaningful patterns from a data set pertaining to a fluid

system.

Since the POD and QPOD methods were applied at every station, this resulted in a large

set of POD modes (also known as coherent structures), and a large set of QPOD modes

(defined in this thesis as the quaternion coherent structures). Due to the large number of

modes available, only a select few were presented here, however, the remaining can be

found at https://github.com/yissac/kaleidoscope.git.

As previously noted in observation 12, every QPOD mode φq
i consists of four com-

ponents φrq
i , φ

iq
i , φ

jq
i , and φkq

i . On the other hand, every POD mode φi consists of three

components φu
i , φ

v
i , and φw

i . Table 3.1 summarizes how the components of the POD modes

and QPOD modes are extracted. The summary is repeated here as table 5.2.
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POD QPOD

udud>φi(X) = φi(X)λi udqudq?φq
i (X) = φq

i (X)λq
i

{λi = (σi)
2}mi=1 {λq

i = (σq
i )

2}mi=1

φui = rown
j=1 (φi)

φvi = rown×2
j=n+1 (φi)

φwi = rown×3
j=n×2+1 (φi)

φrq
i = real (φq

i )

φiq
i = imagi (φq

i )

φjq
i = imagj (φq

i )

φkq
i = imagk (φq

i )

Table 5.2: A summary highlighting how the components of the POD and QPOD modes are
extracted.

Figure 5.10 shows the components of the first POD mode (not counting the average

mode) and the components of the first QPOD mode (not counting the average mode) at

station one.

Theorem 2 states that when quaternion eigenvectors are multiplied by a quaternion

scalar, the result is also an eigenvector. Therefore, associated with every eigenvalue λq
i

is a set of eigenvectors. The set of eigenvectors was termed the kaleidoscope set, where

all the vectors in a given kaleidoscope set relate to one another via multiplication with a

quaternion scalar, which is equivalent to rotating every entry of a given eigenvector in a

four dimensional space. This was briefly alluded to in section 4.5.4. Figure 5.11 shows two

eigenvectors in the same kaleidoscope set associated with the first eigenvalue, φq
1 and φq,rot

1 ,

such that

φq,rot
1 = φq

1w, (5.11)

where w = −0.42 + 0.39i− 0.68j + 0.45k. Both φq
1 and φq,rot

1 belong to the kaleidoscope

set κ(λ1).

In fact, there are infinitely many equivalent vectors, all of which relating to each other,

and all belonging to the same kaleidoscope set κ(λq
i ). Therefore, any vector in κ(λq

i ) can be

considered as the first QPOD mode. https://github.com/yissac/kaleidoscope.
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Figure 5.10: The first column to left shows the components of the first POD mode φ1. The
column to the right shows the components of the first QPOD mode φq

1. The modes were
extracted by applying the POD and QPOD methods to the PIV data at station two.

git can be used to visualize the QPOD modes when a continuous unit quaternion multi-

plication is applied to them, creating a kaleidoscope effect.

Observation 32. Every QPOD mode belongs to an infinite set of modes termed the Kalei-

doscope set. When the components of a QPOD mode are visualized as they are being

multiplied by a continuous function w(t) as follows

φq,rot
i = φq

iw(t), (5.12)

where w(t) ∈ H and ‖w(t)‖ = 1, a kaleidoscope effect happens.

The fact that every QPOD mode contains four components that can be rotated adds
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Figure 5.11: The first column to left shows the components of the first POD mode φ1. The
middle column shows the components of the first QPOD mode φq

1. The column on the right
shows the components of an equivalent rotated version of first QPOD mode φq,rot

1 = φq
1w.

The modes were extracted by applying the POD and the QPOD methods to the PIV data at
station two.

extra complexity. This makes it difficult to:

1. Interpret the meaning of the QPOD modes, its associated components, and the pos-

sible rotations associated with them.

2. Compare the information captured between the POD modes and QPOD modes.

Hence, the magnitude of the components associated with the ith mode are defined as follows

Mi,j =

((
φui,j
)2

+
(
φui,j
)2

+
(
φui,j
)2
) 1

2

, (5.13)

M q
i,j =

((
φrq
i,j

)2
+
(
φuq
i,j

)2
+
(
φvq
i,j

)2
+
(
φwq
i,j

)2
) 1

2

. (5.14)

where M r
i ,M

q
i ∈ Rn and j resembles the j th entry associated with the vectors mi and mq

i .

The definition of M r
i and M q

i enables a direct comparison between the POD and QPOD
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modes. This is accomplished by taking the difference between M r
i and M q

i as follows

Mi = M r
i −M

q
i . (5.15)

Figure 5.12 shows a comparison between the first POD mode and the first QPOD mode

at the second station, the QPOD mode is considerably sharper and less blurry.

Figure 5.12: The magnitude of the first POD mode and the magnitude of the first QPOD
mode are displayed in the first two rows. The third row displays their difference. Results
shown are for station one.

Observation 33. The flow features extracted via the QPOD method are sharper and with

less blur around the edges as compared to the flow features extracted via the POD method.

Figure 5.13 compares the second POD mode and the second QPOD mode obtained at

the second station. Figure 5.13 shows a greater discrepancy between the patterns extracted

using each method as compared to figure 5.12. The first and second modes extracted using

the POD method are very similar.

138



www.manaraa.com

Figure 5.13: The magnitude of the second POD mode and the magnitude of the second
QPOD mode are displayed in the first two rows. The third row displays their difference.
Results shown are for station one.

5.1.4 Experiment Four

In chapter 4, it was mentioned that a CFD grid was generated and the flow around a three-

dimensional cylinder was numerically computed at different Reynolds numbers. The POD

and QPOD methods were then applied to the outputs of every simulation ran. This experi-

ment utilized the snapshot implementation of the POD method and the quaternion snapshot

implementation of the QPOD method. Hence, this experiment tests the following hypothe-

ses:

1. Hypothesis 1: compare the POD and the QPOD methods as they apply to three di-

mensional fluid systems.

2. Hypothesis 2: verify the scalability of the QPOD method.

As with all the previous experiments, it is important to look for four results:

• Normalized distance metric, ηn, for each simulation ran.
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• Singular values, {σi(ud)}i and {σqi (udq)}i.

• Performance metrics, εr
m and εq

m.

• Mode comparison and visualization.

Figure 5.14 shows the normalized distance metric computed and plotted for each sim-

ulation case. The plot shows a very close agreement between the POD and QPOD results

35 120 240 300 600

Reynolds Number

0

0.5

1

1.5

η
n

×10
-6

Figure 5.14: Normalized distance metric ηn computed for each simulation ran. The
Reynolds number was increased from one simulation to the next.

for all cases as the normalized distance metric ηn was found to be in the order of 10−6.

However, for the case where the Reynolds number was set to 35, both the POD and the

QPOD methods gave identical results and ηn = 0.

Re = 35

In accordance with the previously mentioned literature, at Reynolds number below the

critical Reynolds number, the flow developed into a steady flow. Figure 5.15b shows the
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lift and drag coefficients converging to their steady state values as the flow becomes steady.

Figure 5.15a shows the contour plots of the velocity magnitude of the developed flow at

iteration 1550.

(a) Simulation snapshot of the flow at iteration
1550. Contour plot of the velocity magnitude
‖U‖ is shown, where ‖U‖ =

√
u2 + v2 + w2.

The specific contour plot shown is a planar slice
along the Y-axis at Y = 6.
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(b) Lift and drag coefficients on the cylinder
versus iteration number at Reynolds number
35.

Figure 5.15: Reynolds number 35

After the flow was allowed to develop, and the solution correctly converged to the

steady state solution, the POD and QPOD methods were applied to 50 consecutive snap-

shots of the developed flow. In this case, both the POD and the QPOD gave identical results,

as can be seen in figure 5.16. Not only are the modes identical, but they also resulted in the

same approximations. Moreover, the QPOD modes were found to be identical to the POD

modes,

Re = 120

As the Reynolds number was increased beyond the critical Reynolds number, a Hopf bi-

furcation occurred in which the stable, steady state solution became unstable, and a two

dimensional, periodic attractor was born. This specific attractor for the two or three di-

mensional cylinder at this range of Reynolds number is known as the Benard-Von Karmen
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Figure 5.16: The plot on the left shows the errors of the POD reduced order models and the
QPOD reduced order models versus the number of modes used to generate them. The plot
on the right shows the normalized singular values of each method.
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vortex street. The result of simulating the three dimensional cylinder at Reynolds number

120 can be seen in figure 5.17. A snapshot of the simulation at iteration 6200 showing the

Benard-Von Karmen vortex street is shown in figure 5.17a. The contour plot of the veloc-

ity magnitude shows the same structure that has been shown in the previous literature. In

(a) Simulation snapshot of the flow at iteration
6200. Contour plot of the velocity magnitude
‖U‖ is shown, where ‖U‖ =

√
u2 + v2 + w2.

The specific contour plot shown is a planar slice
along the Y-axis at Y = 6.

0 1000 2000 3000 4000

Iteration

-2

-1

0

1

2

3

4

5

6

C
L
, 

C
D

(b) Lift and drag coefficients versus iteration
number.

Figure 5.17: Simulation results at Reynolds number 120.

figure 5.17b, the lift and drag coefficients are plotted against the iteration number. It can be

seen that when enough time is allowed for the flow to develop, the flow becomes periodic

as expected.

The POD and the QPOD methods were then applied to a subset of the data. Specifically,

120 snapshots were chosen in the periodic region and the flow field variables of every 10th

iteration between iteration number 5010 to 6200 was used. Figure 5.18 shows the results of

applying the POD and the QPOD methods. Both methods produce almost identical results.

The singular values are almost identical and the approximation errors of both methods are

equal.

Figure 5.19 shows the average mode and the first three modes. Since both methods

produce almost identical modes only one subset of the modes is shown here. The modes
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Figure 5.18: The plot on the left shows the errors of the POD reduced order models and the
QPOD reduced order models versus the number of modes used to generate them. The plot
on the right shows the normalized singular values of each method.
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exhibit translational symmetry in the Y-direction since the flow is strictly two dimensional,

i.e. v = 0, albeit machine error. Hence, only the contours on a planar slice along the Y-

axis at Y=6 are shown. The modes shown are to be in accordance with the ones shown by

(a) Contours of the velocity magnitude of the
average flow. The specific contour plot shown
is a planar slice along the Y-axis at Y = 6.

(b) Contours of the velocity magnitude of the
first mode, M r

1. The specific contour plot
shown is a planar slice along the Y-axis at Y
= 6.

(c) Contours of the velocity magnitude of the
second mode, M r

2. The specific contour plot
shown is a planar slice along the Y-axis at Y =
6.

(d) Contours of the velocity magnitude of the
third mode, M r

3. The specific contour plot
shown is a planar slice along the Y-axis at Y
= 6.

Figure 5.19: Subset of the POD modes generated using the data set with Re = 120. The
figures show contours of M r

i =
√

(φui )
2 + (φvi )

2 + (φwi )2.

Deanne in 1991 [125]. By comparing to the notes of Noack et al. [127], it was also verified

that the modes with i = 1, 2, 5, 6, . . . are anti-symmetric with the x-axis,

φui (x,−z) = −φui (x, z),

φwi (x,−z) = +φwi (x, z),
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and the modes with i = 3, 4, 7, 8, . . . are symmetric with the x-axis,

φui (x,−z) = +φui (x, z),

φwi (x,−z) = −φwi (x, z).

The reader should note that figure 5.19 does not show φui , φ
v
i , or φwi , instead the contours

of the magnitude of the modes are shown.

Re = 240

As the Reynolds number is further increased, bifurcations keep occurring in accordance to

the universal scaling laws of nonlinear systems [119, 120]. In the case of the three dimen-

sional cylinder, the two dimensional periodic orbit became unstable and a new three dimen-

sional attractor was born. This is typically observed with the presence of stream-wise vor-

tices and span-wise flow, as discussed in more details by Roshko [116] and Williamson [117,

114]. The result of simulation at Reynolds number 240 can be seen in figure 5.20.

A snapshot of the simulation at iteration 65370 showing the three dimensional flow is

shown in figure 5.20. It is common practice to plot the iso-surfaces of the Q-criterion in

three-dimensional flows, where vortex structures might exist. Figure 5.20 demonstrates the

three-dimensional structures and the three-dimensional flow by plotting the iso-surfaces

of the Q-criterion at 0.25. The stream-wise vortices are colored based on the rotational

direction of the vortices with red representing clockwise rotation and blue representing

counter clockwise rotation. Typically, a modulation to the grid is given in the span-wise

direction to excite flow in the span-wise direction allowing for three-dimensional effects

to develop. In this simulation, no excitation of such was done, instead the round-off and

truncation errors uniformly distributed over the grid served as the excitation required for

the flow to become three-dimensional. For this reason, the flow required a large number of

iterations for the three-dimensional effects to develop. This can be seen in the lift and drag
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(a) View showing the iso-surface of the Q-
criterion set to 0.25 for snapshot 65370 at
Reynolds number 240.

(b) Side view showing the iso-surface of the
Q-criterion set to 0.25 for snapshot 65370 at
Reynolds number 240.

(c) Top view showing the iso-surface of the
Q-criterion set to 0.25 for snapshot 65370 at
Reynolds number 240.
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(d) Lift and drag coefficient versus iteration
number at Reynolds number 240.

Figure 5.20: Simulation results for Re = 240.

147



www.manaraa.com

coefficients plot shown in figure 5.20d. As the solution was marched forward in time, the

three dimensional instabilities grew, the stable periodic oscillations of the Karman street

became unstable, and the solution converged towards a three-dimensional periodic orbit.

This caused the lift and drag coefficients to deviate from the two-dimensional Karman

street pattern at around iteration number 18,000 and beyond. Another characteristic of

three-dimensionality is the growth in span-wise velocity. At Reynolds numbers where

the flow is strictly two-dimensional, as is the case at Re = 120, the span-wise velocity,

v, always remained very close to 0. However, at Re = 240, as the three dimensional

instabilities developed, the magnitude of the span-wise velocity became substantial.

The POD and the QPOD snapshot methods were applied to a subset of the data. Specif-

ically, 615 snapshots were chosen. The flow field variables of every 10th iteration between

iteration number 59230 and 65380 was used. Figure 5.21 shows the results of applying

the POD and the QPOD methods. Both methods produced almost identical results. The

singular values are almost identical and both methods produced equal approximations.

Figure 5.22 shows the average mode and the first three POD modes. The contours of

the velocity magnitudes of the modes are shown, where the velocity magnitudes for the

POD modes are computed as

M r
i,j(X) =

√(
φui,j
)2

+
(
φvi,j
)2

+
(
φwi,j
)2
, (5.16)

and the velocity magnitude of the QPOD modes are computed as

M q
i,j(X) =

√(
φrq
i,j

)2
+
(
φuq
i,j

)2
+
(
φvq
i,j

)2
+
(
φwq
i,j

)2
. (5.17)

When the velocity magnitudes are computed for each mode and the contours plotted, both

methods produce almost identical modes. Hence only a subset of the POD modes is shown

here. It is important to note that since the flow is three dimensional, the modes are not trans-

lationally symmetric along the Y-axis. However, in order to visualize the three dimensional

148



www.manaraa.com

0 10 20 30 40 50

0

5

10

15

20

25

0 10 20 30 40 50
10

-3

10
-2

10
-1

10
0

Figure 5.21: Plot to the left shows the ROM errors for the POD and QPOD methods. The
plot on the right shows the normalized singular values associated with each mode from
each method. Results are for Re = 240.
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modes, the contours on a slice along the Y-axis at Y=6 was used.

(a) Contours of the velocity magnitude of the
average flow. The specific contour plot shown
is a planar slice along the Y-axis at Y = 6.

(b) Contours of the velocity magnitude of the
first mode, M r

1. The specific contour plot
shown is a planar slice along the Y-axis at Y
= 6.

(c) Contours of the velocity magnitude of the
second mode, M r

2. The specific contour plot
shown is a planar slice along the Y-axis at Y =
6.

(d) Contours of the velocity magnitude of the
third mode, M r

3. The specific contour plot
shown is a planar slice along the Y-axis at Y
= 6.

Figure 5.22: Subset of the POD modes generated using the data set with Re = 240. The
figures show contours of M r

i =
√

(φui )
2 + (φvi )

2 + (φwi )2.

Re = 300

As the Reynolds number was further increased, more bifurcations occurred. Mittal and Bal-

achandar [122] show via numerical simulation of the three dimensional unconfined cylinder

that the flow becomes three-dimensional sooner at higher Reynolds numbers, which is in

accordance with the results shown in figure 5.24. Indeed figure 5.23 shows that three-

dimensional effects began to grow around iteration number 8,000, which is much sooner

when compared to the flow simulation at Re = 240 where three-dimensional effects began

around iteration number 18,000. This can be identified by observing the lift and drag coef-

ficients as the solution starts to deviate from the two-dimensional periodic pattern defined

by the Benard-Von Karman vortex street.
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It is common practice to plot the iso-surfaces of the Q-criterion in three-dimensional,

flows where vortex structures might exist. Figure 5.20, demonstrates the three-dimensional

structures and the three-dimensional flow by plotting the iso-surfaces of the Q-criterion at

0.25. It is interesting to compare the three dimensional structures and flow patterns shown

in figure 5.23 for the simulation at Re = 300 and the three dimensional structures and flow

patterns shown in figure 5.20 for the simulation at Re = 240.

The POD and the QPOD snapshot methods were then applied to a subset of the data.

Specifically, 1000 snapshots were chosen. The flow field variables of every 10th iteration

between iteration number 53,000 and 54,000 was used. Figure 5.24 shows the results of ap-

plying the POD and the QPOD methods. Both methods produced almost identical results.

The singular values are almost identical and the approximations of both methods almost

exactly match.

Figure 5.25 shows the average mode and the first three POD modes. The contours of

the velocity magnitudes of the modes are shown, where the velocity magnitudes for the

POD modes are computed as shown in equation 5.16, and the velocity magnitude of the

QPOD modes are computed, as shown in equation 5.17. When the velocity magnitudes are

computed for each mode and the contours plotted, both methods produce almost identical

modes. Hence, only a subset of the POD modes is shown here. It is important to note that

since the flow is three-dimensional, the modes are not translationally symmetric along the

Y-axis. However, in order to visualize the three dimensional modes, the contours on a slice

along the Y-axis at Y=6 was used.

Re = 600

In order to perform a preliminary exploitative study of the potential of the QPOD, another

simulation is run at Reynolds number 600. The simulation results are shown in figure 5.26.

Figure 5.26d shows the onset of three-dimensionality occurring much sooner, around iter-

ation number 500, when compared to the simulations ran at the lower Reynolds numbers.
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(a) View showing the iso-surface of the Q-
criterion set to 0.25 for snapshot 54,000 at
Reynolds number 300.

(b) Side view showing the iso-surface of the
Q-criterion set to 0.25 for snapshot 54,000 at
Reynolds number 300.

(c) Top view showing the iso-surface of the
Q-criterion set to 0.25 for snapshot 54,000 at
Reynolds number 300.
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(d) Lift and drag coefficient versus iteration
number at Reynolds number 300.

Figure 5.23: Simulation results for Re = 300.
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Figure 5.24: Plot to the left shows the ROM errors for the POD and the QPOD methods.
The plot on the right shows the normalized singular values associated with each mode from
each method. Results are for Re = 300.
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(a) Contours of the velocity magnitude of the
average flow. The specific contour plot shown
is a planar slice along the Y-axis at Y = 6.

(b) Contours of the velocity magnitude of the
first mode, M r

1. The specific contour plot
shown is a planar slice along the Y-axis at Y
= 6.

(c) Contours of the velocity magnitude of the
second mode, M r

2. The specific contour plot
shown is a planar slice along the Y-axis at Y =
6.

(d) Contours of the velocity magnitude of the
third mode, M r

3. The specific contour plot
shown is a planar slice along the Y-axis at Y
= 6.

Figure 5.25: Subset of the POD modes generated using the data set with Re = 300. The
figures show contours of M r

i =
√

(φui )
2 + (φvi )

2 + (φwi )2.
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Figure 5.26a shows a snapshot of the simulation flow at iteration number 66,000. The sur-

faces shown are the iso-surfaces of the Q-criterion at 0.25. Figures 5.26b and figure 5.26c

show the side and top view of the same snapshot.

The POD and the QPOD snapshot methods are applied to a subset of the data. Specifi-

cally, 1000 snapshots were chosen. The flow field variables of every 10th iteration between

iteration number 56,000 and 66,00 was used. Figure 5.27 shows the results of applying the

POD and the QPOD methods. Both methods produce almost identical results. The singular

values are almost identical and the approximations of both methods are almost equal.

Figure 5.28 shows the average mode and the first three POD modes. The contours of

the velocity magnitudes of the modes are shown, where the velocity magnitudes for the

POD modes are computed as shown in equation 5.16, and the velocity magnitude of the

QPOD modes are computed as shown in equation 5.17. When the velocity magnitudes are

computed for each mode and the contours plotted, both methods produce almost identical

modes. Hence, only a subset of the POD modes is shown here. It is important to note that

since the flow is three dimensional, the modes are not translationally symmetric along the

Y-axis. However, in order to visualize the three dimensional modes, the contours on a slice

along the Y-axis at Y=6 was used.

Summary of Results

The grid used in this experiment consisted of 2,271,775 nodes, at every node the three flow

field variables were computed and stored. In the simulation run whereRe = 600, one thou-

sand snapshots were used resulting in a data set comprised of 6,815,325,000 real numbers,

around 48 Giga-bytes of storage space. Using the direct implementation on such a data

set would not have been possible. However, the quaternion snapshot implementation was

able to perform the quaternion proper orthogonal decomposition, and also gave consistent

results when compared to the traditional proper orthogonal decomposition.

Observation 34. The quaternion snapshot implementation enables the scalability of the
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(a) View showing the iso-surface of the Q-
criterion set to 0.25 for snapshot 66,000 at
Reynolds number 600.

(b) Side view showing the iso-surface of the
Q-criterion set to 0.25 for snapshot 66,000 at
Reynolds number 600.

(c) Top view showing the iso-surface of the
Q-criterion set to 0.25 for snapshot 66,000 at
Reynolds number 600.

0 1 2 3 4 5 6

Iteration
×10

4

-4

-2

0

2

4

6

C
L
, 

C
D

(d) Lift and drag coefficient versus iteration
number at Reynolds number 600.

Figure 5.26: Reynolds number 600
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Figure 5.27: Plot to the left shows the ROM errors for the POD and the QPOD methods.
The plot on the right shows the normalized singular values associated with each mode from
each method. Results are for Re = 600.
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(a) Contours of the velocity magnitude of the
average flow. The specific contour plot shown
is a planar slice along the Y-axis at Y = 6.

(b) Contours of the velocity magnitude of the
first mode, M r

1. The specific contour plot
shown is a planar slice along the Y-axis at Y
= 6.

(c) Contours of the velocity magnitude of the
second mode, M r

2. The specific contour plot
shown is a planar slice along the Y-axis at Y =
6.

(d) Contours of the velocity magnitude of the
third mode, M r

3. The specific contour plot
shown is a planar slice along the Y-axis at Y
= 6.

Figure 5.28: Subset of the POD modes generated using the data set with Re = 600. The
figures show contours of M r

i =
√

(φui )
2 + (φvi )

2 + (φwi )2.
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quaternion proper orthogonal decomposition.

Unfortunately, this experiment did not provide any clear advantages for using the QPOD

method over the POD method as the results for both methods were identical. Moreover, the

method did not provide insight to any parameter dependence that the QPOD method might

exhibit. In the next section, some of the mathematical differences between the POD and

QPOD methods are highlighted.

5.2 Mathematical Observations

Experiments one, two, and three clearly present a stark difference between the perfor-

mances of the two methods. Not only do the two methods produce different singular val-

ues, but sometimes they produce very different modes. In fact, it was noted in chapter 3,

and clearly demonstrated in this chapter, that the QPOD modes contain an extra component

that is not present in the POD modes. Moreover, the components of the QPOD modes can

be rotated, generating infinitely many modes for every eigenvalue. In the next sections,

more mathematical observations are made regarding the ability of each method to extract

dynamical features in a flow, and regarding the ability of each method to create rank-m

approximations. These observations can help explain why the results shown might have

occurred.

5.2.1 Distilling Dynamics

The results of experiments one, two, and three clearly demonstrated that the QPOD method

outperformed the POD method. The performances between the two methods was measured

using the approximation errors εq
m and εr

m. Observations 15, 16, 25, 30 and 31 clearly

indicate that the QPOD method results in better approximations than the POD method.

Observations 23, 26, and 28 clearly indicate that the QPOD singular values descend in

a steeper fashion as compared to the POD singular values. Xu et al. [90] made a similar

observation regarding the singular values associated with the POD and the QPOD methods
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when applied to color images. The authors explained that the reason why the quaternion

singular values descend faster is because the QPOD modes contain more information than

the POD modes. In fact, in experiment two, it was shown that using only two QPOD modes,

a perfect approximation of data set A was achieved while the POD method required five.

Observation 33 notes that the QPOD modes were sharper than the POD modes. Xu

et al. [90] also made a similar observation and suggested that the QPOD method better

captured the constancy of images as compared to the POD method.

All of these observations suggest that under certain conditions (larger ηn), the QPOD

modes better capture the relevant information in a given data set than the POD modes.

However, in the literature, no clear explanation was found as to why the QPOD modes

retain more information than the POD method. In the remainder of this section, a detailed

examination of both methods is presented which reveals why the information content of the

QPOD modes is richer when compared to their POD counterparts.

Consider the SVD and the QSVD of the matrices ud ∈ R(n×3)×N and udq ∈ Hn×N

respectively as follows

ud = ΦΣA,

udq = ΦqΣqAq.

(5.18)

Using simple matrix algebra, both the POD modes Φ, and the QPOD modes Φq are placed

to one side of the equal sign such that

Φ = udA>Σ−1,

Φq = udqAq? (Σq)−1 .

(5.19)

An expression for the columns of equations 5.19 is given by

φi = coli(Φ) = ud coli(A)σ−1
i

φq
i = coli(Φq) = udq coli(A)(σq

i )
−1

(5.20)
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Equations 5.20 states that the POD modes are a linear combination of the snapshot ma-

trix ud, while the the QPOD modes are a linear combination of the quaternion snapshot

matrix udq. More explicitly, using a simple linear algebra interpretation of matrix multi-

plication (multiplying a matrix and vector is as a linear combination of the columns the

matrix), the ith POD mode is given by

φi = ud coli(A)σ−1
i

=
N∑
j=1

colj(ud)
Aij
σi

= col1(ud)
Ai1
σi

+ col2(ud)
Ai2
σi

+ · · ·+ colN(ud)
AiN
σi

.

(5.21)

Since, (Aij/σi) ∈ R, the POD modes are a linear combination of the snapshots over the

scalar field of real numbers. Using the same argument, the ith QPOD mode is given by

φq
i = udq coli(Aq)(σq

i )
−1

=
N∑
j=1

colj(udq)
Aq
ij

σq
i

= col1(udq)
Aq
i1

σq
i

+ col2(udq)
Aq
i2

σq
i

+ · · ·+ colN(udq)
Aq
iN

σq
i

.

(5.22)

Since, (Aq
ij/σ

q
i ) ∈ H, the QPOD modes are a linear combination of the snapshots over the

division algebra of quaternion numbers.

Observation 35. The POD modes are formed via linear combinations of the snapshots

using real scalars as follows

φi =
N∑
i=1

coli(ud)αi, αi ∈ R. (5.23)

The QPOD modes are formed via linear combinations of the snapshots using quaternion
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scalars as follows

φq
i =

N∑
i=1

coli(udq)αq
i , αq

i ∈ H. (5.24)

Hence, both methods are linear and obey the principle of superposition, but only over their

respective algebras.

Observation 36. Given a data matrix ud, the POD method can only extract the features

present in ud that can be expressed by addition and multiplication of the columns of ud. On

the other hand, given a quaternion representation of the same data matrix udq, the QPOD

method can only extract the features present in udq that can be expressed as an addition,

multiplication, and rotation of the columns of udq.

Observations 35 and 36 imply that the QPOD method has more freedom in the oper-

ations it can employ to a data set in order to extract the important features present in that

data set. In the context of dynamical systems, this translates to a superior capability of

the QPOD method to isolate and distill the essential dynamics present in a data set. This

explains why the QPOD modes retain more information as compared to the POD modes.

In the next section, the ability of each method to combine the components associated with

each mode is examined.

5.2.2 Combining Modes, Creating Approximations

Chapter 2 outlines how the POD method performs a modal decomposition of the flow field

variables. A modal decomposition breaks down a function of space and time (the flow

field variables U(X, t)), into the sum of space functions (POD modes φi(X)) and temporal

functions (time coefficients, ai(t)). The temporal functions ai(t) determine how each mode

contributes to the overall approximation of the original flow. Thus far, a lot of attention

was paid to how the POD modes compare to the QPOD modes, but little to no attention has

been paid to the role of the temporal functions ai(t) and how they generalize in the QPOD

method.
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Observation 22 notes that even when the average mode of a data set was used to create

approximations, the QPOD approximations udq
1 were better than the POD approximations

ud
1. This observation is surprising because the average POD mode contains exactly the

same information as the average QPOD mode. For a given data set, the only difference

between the average POD mode and the average QPOD mode is merely a difference of

representation. In the case of the POD method, the average mode is represented using real

numbers. While in the case of the QPOD method the average mode is represented using

quaternion numbers.

Since the average POD mode is the same as the average QPOD mode, but the resulting

approximations are different, then the process of combining the modes must be the cause

of this disparity. The remainder of this section explores why sometimes the QPOD approx-

imations are superior to the POD approximations, even when the modes are the same. The

following treatment borrows several ideas and observations from the work of Xu et al. [90].

In order to understand why the QPOD approximations are better than the POD approx-

imations, both methods are reformulated in three different forms:

1. Summation form

2. Equation form

3. Matrix form

These reformulations are equivalent to one another, but they greatly contrast the differences

between the components associated with the POD modes and the components associated

with QPOD modes. All three mentioned forms are defined for both the POD method and

QPOD method and presented next.

The following is a representation of the POD method and the QPOD method in their
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summations forms. The summation forms of the POD and QPOD methods are given by

ud =
N∑
i=1

φiai, (5.25)

udq =
N∑
i=1

φq
ia

q
i . (5.26)

The POD summation form can be expanded as follows

ud =


U d

V d

W d

 =
N∑
i=1


φui

φvi

φwi

 ai. (5.27)

Hence, the summation form can also be rewritten as a set of equations and is termed the

equation form of the POD method and is given as follows

U d = Φua,

V d = Φva,

W d = Φwa.

(5.28)

where Φu = [φu
1 . . . φ

u
N ], Φv = [φv

1 . . . φ
v
N ], Φw = [φw

1 . . . φ
w
N ], and a = [a1 . . . aN ].

The QPOD summation form can also be expanded as follows

udq = U di + V dj +W dk

=
N∑
i=1

(
φrqi + φiqi i + φjqi j + φkqi k

)(
arq
i + aiq

i i + ajq
i j + akq

i k
)
.

(5.29)

Let Φq = [φq
1 . . . φ

q
N ] and aq = [aq

1 . . . a
q
N ], then by carefully expanding the terms and

carrying out the necessary quaternion multiplications, the following set of equations which
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are termed the equation form the QPOD method are obtained

0 = Φrqa0 − Φiqa1 − Φjqa2 − Φkqa3,

U d = Φrqa1 + Φiqa0 + Φjqa3 − Φkqa2,

V d = Φrqa2 − Φiqa3 + Φjqa0 + Φkqa1,

W d = Φrqa3 + Φiqa2 − Φjqa1 + Φkqa0,

(5.30)

where Φrq = real(Φq), Φiq = imagi(Φ
q), Φjq = imagj(Φ

q), Φkq = imagk(Φq), and a0 =

real(aq), a1 = imagi(a
q), a2 = imagj(a

q), a3 = imagk(aq).

The equation forms of the POD and QPOD methods are linear, hence they can be ex-

pressed in terms of matrix multiplication. This leads to the following matrix form of the

POD method

[
0, U d, V d, W d

]
=

[
0, φu, φv, φw

]


a 0 0 0

0 a 0 0

0 0 a 0

0 0 0 a


, (5.31)

and the matrix form of the QPOD method

[
0, U d, V d, W d

]
=

[
φrq, φiq, φjq, φkq

]


a0 a1 a2 a3

−a1 a0 −a3 a2

−a2 a3 a0 −a1

−a3 −a2 a1 a0


. (5.32)

Table 5.3 summarizes the different representations of the POD and QPOD methods.
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POD QPOD

φui = rown
j=1 (φi)

φvi = rown×2
j=n+1 (φi)

φwi = rown×3
j=n×2+1 (φi)

φrq
i = real (φq

i )

φiq
i = imagi (φq

i )

φjq
i = imagj (φq

i )

φkq
i = imagk (φq

i )

Summation Form ud =
∑N

i=1 φiai udq =
∑N

i=1 φ
q
ia

q
i

Equation Form

U d = Φua

V d = Φva

W d = Φwa

0 = Φrqa0 − Φiqa1 − Φjqa2 − Φkqa3

U d = Φrqa1 + Φiqa0 + Φjqa3 − Φkqa2

V d = Φrqa2 − Φiqa3 + Φjqa0 + Φkqa1

W d = Φrqa3 + Φiqa2 − Φjqa1 + Φkqa0

Matrix Form Equation 5.31 Equation 5.32

Table 5.3: A summary highlighting how the components associated with the POD mode
and the components associated with the QPOD modes contribute to the reconstruction of a
data set.

All three forms are equivalent to one another, however, by inspecting the different

forms, a number of observations can be made

Observation 37. The equation form reveals that the POD method creates approximations

using the same time coefficient for all the of the components associated with a POD mode.

On the other hand, the QPOD method creates approximations using four time coefficients,

which allows for a greater flexibility in combining the components of each mode.

Observation 38. All of the component of every QPOD mode Φrq,Φiq,Φjq, and Φkq con-

tribute to approximating the data sets U d, V d, andW d. On the other hand, the POD method

approximates U d using only Φu, V d using only Φv, and W d using only Φw.

Observation 39. The QPOD method results in an extra component associated with every

QPOD mode, real(φq
i ). Hence, the QPOD method produces approximations using modes

with four components, rather than three, as is the case for the POD method.
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Observation 40. The equation form of the QPOD method imposes an explicit linear rela-

tion between the components of the QPOD modes given by equation 5.30, and is repeated

here

0 = Φra0 − Φua1 − Φva2 − Φwa3. (5.33)

Such a relationship is not imposed on the POD modes.

Observation 41. The QPOD time coefficients aq
i are a generalization of the POD time

coefficients ai. Only when a1 = a2 = a3 = 0 do the QPOD method create approximations

by combining the components in a fashion similar to the POD method. In such a situation

the quaternion time coefficient reduces to

aq =



a0 0 0 0

0 a0 0 0

0 0 a0 0

0 0 0 a0


. (5.34)

These observations clearly show that the QPOD method is more powerful than the POD

method in generating approximations. This is because the QPOD method is more versatile

in combining the components associated with its modes in order to generate approximations

as compared to the POD method which is more restricted.

A rank-m approximation created via the POD method is given in its summation form

as

ud =
m∑
i=1


φui

φvi

φwi

 ai, (5.35)

whereas a rank-m approximation created via the QPOD method is given in its summation

form as

udq =
m∑
i=1

(
φrqi + φiqi i + φjqi j + φkqi k

)
aq
i . (5.36)
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Hence, even when the QPOD modes are the same as the POD modes (i.e. φrq
i = 0, φiq

i = φui ,

φjq
i = φvi and φkq

i = φwi ), the QPOD method can still produce a better rank-m approxima-

tion than the POD method can; because the time coefficients are different and combine the

components associated with modes differently. This explains why the QPOD method cre-

ated better approximations in experiments one, two, and three, even when only the average

mode was used to create approximations, as noted in observation 22.
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CHAPTER 6

CONCLUSIONS

In 1967, Lumley [1] introduced the proper orthogonal decomposition to the fluid flow com-

munity as an attempt to extract persistent, reappearing patterns in turbulent flows. The work

by Lumley gained significant attention as it showed promising results [84] in it ability to

extract eddies and other features that occur in fluid flow problems [2]. However, it was

not until 1987, when Sirovich [3] introduced the snapshot implementation, that the POD

receive widespread attention, elevating the POD to a benchmark method for the modal

analysis and reduced-order modeling of fluid systems.

Since then, much work has been done to combat the limitations associated with the

POD. A great limitation of the POD method is due to the linearity of the method [2], which

was detailed in section 5.2.1. When the flow is complex, the linear procedure utilized by

the POD method results in modes that do not capture the essence of such a flow. In these

cases, the POD modes are not easy to interpret and visualizing the POD modes does not

add insight to the understanding of the underlying physics of the flow. Moreover, under

these circumstances, the reduced-order models created require a large number of modes

in order to correctly approximate the original system. Some of the recent contributions to

address these issues are summarized by Rowley et al. [30] and Taira et al. [4].

To the knowledge of the author, this thesis is the first to incorporate quaternions into

Lumley’s framework for the purpose of extracting patterns from three-dimensional fluid

systems. The introduction of quaternions into Lumley’s mathematical framework extends

the proper orthogonal decomposition to the quaternion proper orthogonal decomposition.

Using a quaternion variable to describe the three velocity components of a flow provides a

natural means to integrate the flow field variables as a single holistic variable. In addition,

quaternions address the three-dimensional nature of fluid problems which is not elegantly
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captured by the POD. In fact, merely using a quaternion representation can be considered

as a model reduction technique as it reduces the number of variables by two thirds. This

lead to the research objective of this thesis, restated here as follows:

Research Objective. Explore the use of quaternions in the context of modal analysis and

reduced-order modeling of three-dimensional fluid systems.

Since this work is the first of its kind, the scope of the thesis was narrowed down to

investigate how a quaternion approach to the benchmark method (POD) would compare.

Prior work has investigated the QPOD method, more notably the work of Le Bihan [89]

in three-dimensional signal processing and the work of Xu et al. [90] in color image com-

pression. However, no research has been done to investigate the application of QPOD to

fluid problems, even though a quaternion formulation of the Navier-Stokes equations was

derived by Gibbon [106] and later reformulated by Postnikov and Stepanova [107]. The

purpose of this thesis was to investigate the benefits of using quaternions in the context

of modal analysis and reduced-order modeling of three-dimensional fluid systems. This

was formulated as the main research question, research question 1, of this thesis, which is

repeated here as follows:

Research Question 1. How would a quaternion approach to the POD method in the con-

text of modal analysis and reduced-order modeling of three-dimensional fluid systems com-

pare to the traditional POD method?

Four experiments were set up to provide the necessary evidence needed to answer this

question. All of the four experiments applied the POD and the QPOD methods to dif-

ferent data sets, and outcomes of each method were then compared and contrasted with

one another. The first experiment was designed to test the average performance of both

methods and to discover any correlations that might be present. Hence, one thousand data

sets consisting of three matrices U d, V d,W d ∈ R5×5 were generated. The data sets were

randomly generated due to the difficulty in obtaining and applying the POD and QPOD
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methods to a thousand data sets pertaining to a three-dimensional fluid problem. The re-

sults show clearly that the rank-m approximations generated using the QPOD method were

better than the rank-m approximations generated using the POD method. Moreover, strong

correlations were also uncovered, most notably, a correlation between the distance metric

η and the performance metrics used.

This correlation suggested that the differences between the POD and QPOD methods

can be further exaggerated. This was tested in the second experiment, where two data sets

were generated, data set A and data set B. Data set A was generated using MATLAB’s op-

timization routine such that η was maximized, whereas data set B was generated such that

η was minimized. The results where surprising as the QPOD showed a huge performance

advantage over the POD method when applied to data set A but no difference in results

when applied to data set B. These finding further confirm the correlation between η and the

performance metrics.

Until then, the methods have still not been applied to a data set pertaining to a three-

dimensional fluid system. Thus, in experiment three, the methods were applied to a data

set obtained by Eppink [112] at NASA Langley. The data set pertained to measurement of

a three-dimensional fluid flow over a forward facing step collected at six locations down-

stream of the flow. The POD and QPOD methods were then applied to the data sets. The

results consistently verified that the QPOD method was better than the POD method.

Two other research questions were also formulated and addressed in this thesis. Namely,

research question 2, which discusses the scalability of the QPOD method restated here as

follows:

Research Question 2. Is the quaternion proper orthogonal decomposition scalable?

In order to address these questions, experiment four was carried out. In experiment

four, a numerical model of the flow around a three-dimensional cylinder was simulated at

Reynolds numbers 35, 120, 240, 300, and 600. The flow around a three-dimensional cylin-

der was chosen because such a flow has been been rigorously investigated in the past and
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contains a number of rich, parameter-dependent phenomenons, particularly, a sequence of

period doubling that transitions the flow from laminar to turbulence. The grid generated

to simulate the flow comprised of 2,271,775 nodes, simulations of the grid produced mod-

erately large data sets; around 48 Gigabytes of memory for each data set. Inspired by the

work of Sirovich [3], the quaternion snapshot implementation was defined for the first time

in this thesis, and successfully applied the QPOD method to all the data sets. The results of

the quaternion snapshot implementation were also verified to be accurate as well. Unfor-

tunately, the results of the experiment did not produce any evidence to show any Reynolds

number dependence on the performance of the QPOD method. Moreover, the results of the

POD and the QPOD methods were identical as η was negligible.

In short, the majority of the results clearly show an added advantage of the QPOD

method over the POD method. The results of all the experiments indicate that for a given

data set, larger values of ηn indicate that rank-m approximations generated via the QPOD

method are more accurate than the POD method. In the worse can scenario, ηn = 0,

the QPOD method and the POD method produce identical results. Hence, there are no

downsides to a quaternion approach to the POD method other than a slight increase in

computational resources. Even then, the quaternion snapshot implementation alleviates

this issue, as was demonstrated in experiment four supporting the following claim:

Hypothesis 2. If the quaternion snapshot implementation is used, then the QPOD method

is scalable.

It was also mathematically shown that the QPOD method can better distill the essential

dynamics present in a data set by creating richer modes, which were termed the quater-

nion coherent structures. Moreover, it was shown that the QPOD method can combine the

components associated with its modes in more ways than the traditional POD method can.

The extra flexibility of the QPOD method in combining the components associated with

QPOD modes results in more accurate rank-m approximations as compared to the rank-m

approximations generated by the more restrictive POD method.
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These findings provide sufficient evidence to support the main claim of this research,

which is restated here as follows:

Hypothesis 1. If a quaternion approach is used in the context of model-order reduction of

three dimensional fluid systems, then the QPOD method will out perform the traditional

POD method.

In summary the three major contributions of this thesis are:

1. A quaternion approach to the POD method was introduced and its performance

was assessed in the context of modal analysis and reduced-order modeling of three-

dimensional fluid systems.

2. The quaternion snapshot implementation was devised, which allows for the scalabil-

ity of the QPOD method.

3. A mathematical treatment that compares the POD and QPOD methods was pre-

sented.

A quaternion approach provides for a more natural, physics-based framework for treat-

ing three-dimensional fluid flow problems while generalizing the proper orthogonal de-

composition, hence preserving its favorable features and extending the method to higher

dimensional spaces. A quaternion description of three-dimensional fluid systems is a more

sophisticated and a appropriate mathematical representation, which on a fundamental level

abstracts Lumley’s mathematical representation of coherent structures to what is defined

for the first time in this thesis as the quaternion coherent structures.

It appears that quaternion coherent structures contain information that is dynamically

richer than their non-quaternion counterpart, which achieves the following goals:

1. Provides a more informative modal decomposition of fluid systems. This helps sci-

entists and engineers further their understanding of fluid flow.
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2. Produces more efficient reduced-order models that more accurately capture flow dy-

namics and interactions between the flow field variables.

Furthermore, the quaternion coherent structures exhibit an interesting phenomenon which

was termed in this thesis as the kaleidoscope effect. The kaleidoscope effect occurs because

the components of the quaternion coherent structures can rotate, while remaining an eigen-

vector of the quaternion two point spatial correlation matrix ??. When the POD modes are

identical to the QPOD modes, the POD modes can be cast into a quaternion form, which

allows for the rotation of the POD modes as well. This suggests that the quaternion co-

herent structures are an abstraction and a generalization of the coherent structures defined

by Lumley [1], and not just an arbitrary definition. This also suggests that the coherent

structure are only a slice of the full picture that can be observed using the quaternion co-

herent structures. The kaleidoscope effect can be experienced by continuously rotating

the components of the quaternion coherent structures. A visualization tool for the quater-

nion coherent structures of experiment three is written in MATLAB and available online at

https://github.com/yissac/kaleidoscope.git.

The consequences of such an improved modal analysis and reduced-order modeling

capability of fluid systems will greatly aid in many aspects of aircraft design, particularly

in the aeroelastic analysis and design. The QPOD method provides a superior capability to

capture, isolate, and distill the complex aerodynamics over flexible structures encountered

in modern day and future aircraft designs. These accurate but lower-order representations

will pave the way for surrogate-based optimization, uncertainty quantification, and fluid

flow control.

6.1 Limitations

In experiment one, observation 14 it was shown that the distance metric varies from data set

to data set. Moreover, a strong relationship was identified between the distance metric η and

the performance measure εm. Observations 19, 17, and 18 indicate that the performance of
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the QPOD method is compromised for smaller values of η. Experiment four applied both

the POD and the QPOD methods to the flow evolving around a three-dimensional cylinder.

As detailed in the chapter 4, the flow was simulated with FUN3D using the incompressible

Navier-Stokes equations. The results of experiment four showed identical results between

the POD and the QPOD where η ≈ 0.

It is still unclear why both methods produced identical results, but a good guess is

that it could be due to the incompressibility condition. Keefe and Moin [41] state that

the incompressibility of the flow implies that only two of the velocity components are

independent. In such a case, the higher dimensional nature of quaternions is not fully

exploited which might explain why both methods produced identical results. However, this

does present an opportunity for future work, namely, further investigation should examine

how different assumptions, flow parameters, etc., have on the performance of the QPOD

method.

Experiment two revealed that when η was maximized the POD method performed

poorly, and that the singular values associated with the POD method were all equal 5.5a. In

1991, Aubry [133] introduced the concepts of global energy and global entropy from prob-

ability theory to dynamical system. Aubry’s definition of global entropy is the following

H =
1

logN

N∑
k=1

pk log(pk), (6.1)

where pk is the ratio between the eigenvalue and the global energy (sum of the non-zero

eigenvalues). According to Aubry, this definition of entropy represents the distribution

of energy among the eigenvalues. Hence, if the energy is equally distributed among the

modes, then the eigenvalues are equal, and the entropy takes a value of 1. This was exactly

the situation observed in experiment two for data set A, seen in figure 5.5a, which indicates

a possible relationship between η and the entropy defined by Aubry.

Finally, it is important to compare the computational costs of the POD and QPOD

methods. Using careful book-keeping, the multiplication of two quaternions requires 28
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floating-point operations (FLOPs). However, when the quaternions are pure (zero real

part), which is the case in the work of this thesis, their product requires only 14 FLOPs.

Depending on the implementation of the SVD and QSVD being used, Li et al. [108] notes

that given a data set ud ∈ R3n×N , the SVD requires 12nN2 + 9N3 FLOPs, while it would

require the QVSD 96nN2 + 64
3
N3 FLOPs when applied to the quaternion representation of

the same data set udq ∈ Hn×N . Hence, for a data set with N snapshots and n data points

per snapshot, the complexity of the POD is O (9N3) while the complexity of the QPOD is

O
(

64
3
N3
)
. The analysis shows that the computational complexity of both algorithms are

comparable, however, as N becomes larger, the computational speed of the POD over the

QPOD will become more noticeable.

However, if the QPOD method is applied in a situation where η is large, reduced-order

models created via the QPOD method will be more efficient and hence run faster than

the POD reduced-order models. Moreover, applying the quaternion snapshot implementa-

tion of the QPOD method can alleviate some of the computational burden associated with

QSVD.

6.2 Future Work

The work presented in this thesis is a first attempt at incorporating quaternions for the pur-

pose of model-order reduction of three-dimensional fluid systems. The findings presented

in the work of this thesis raise a lot of interesting questions and opens new areas of research.

It was shown that the QPOD generalizes the concept of coherent structures to a more

abstract set of patterns, the quaternion coherent structures. It was shown that such struc-

tures contain four components and exhibit a kaleidoscope effect. Future research should

explore the different interpretations associated with the quaternion coherent structures and

their implications. The ability to rotate the QPOD modes seems to resemble the rotations

of the bases used to represent the infinite realizations of a dynamical system. One such

interpretation might be that QPOD modes generalize over the coordinates of a system and

176



www.manaraa.com

hence they are coordinate free, even though the QPOD modes were computed using a data

set with a coordinate system.

By applying the QPOD method to different fluid systems at different flow regimes,

future research can exploit any hidden potential associated with a quaternion approach and

conceptually further the current understanding of fluid flows. For example, it would be

interesting to see what insights could be gained by applying the QPOD method to flows

with shocks. This also includes incorporating more flow field variables such as pressure,

density and energy into a quaternion description that would be more suitable for different

types of flow such as compressible flow. In fact, it would be interesting to incorporate

all the flow field variables into a single holistic variable by looking beyond the quaternion

algebra and into the eight dimensional algebra known as octonions.

In 1991, Breuer and Sirovich [85] demonstrated the robustness of the POD method in

its ability to extract the basis functions from simulation data under different resolutions

and noise contamination schemes. Future work should also compare the performance of

the POD and QPOD methods under different resolutions and noise contamination schemes.

In section 3.2.1, a quaternion formulation of the Navier-Stokes equations was pre-

sented. Future research should explore projection-based model reduction (Galerkin and

Petrov-Galerkin approximations) of the quaternion coherent structures on the quaternion

formulation of the Navier-Stokes equations. Since the quaternion coherent structures can

be richer than their non quaternion counterpart, projecting the dynamics of fluid systems

onto their span might yield more efficient and more accurate reduced-order models.

In addition, future work should also explore the potential application of the QPOD

method in areas where the POD method has been applied, such as aerodynamic shape

optimization, uncertainty quantification, and controls. Moreover, future research should

adapt and extend the QPOD method by applying the same ideas previously developed to

adapt and extend the POD method. For example, the ideas behind the BPOD, SPOD,

TPOD, Gappy POD, DEIM, etc., may cross fertilize into the QPOD.

177



www.manaraa.com

Recent developments in the field of quaternion-valued random variables also seem to

harness great potential. Advances like the quaternion uncorrelating transform (QUT) com-

pletely exploit second-order statistics associated with the flow. Such a transform not only

uncorrelates the different snapshots, but also seeks to uncorrelate the flow field variables as

well.

Another area for future work should investigate the parametric adaptation of quaternion

coherent structures for different parameter ranges. In such a fashion, quaternions could be

used to interpolate between reduced-order models created at for different flow parameters.

The results presented in this thesis provide compelling evidence advocating for the use

of quaternions in the context of modal analysis and reduced-order modeling of fluid sys-

tems. Future work should therefore continue to explore and exploit the use of quaternions

as that opens up uncharted research areas. These discoveries will revolutionize the current

state of the art and might bring about a new understandings of fluid flow.

178



www.manaraa.com

Appendices

179



www.manaraa.com

APPENDIX A

QUATERNION ALGEBRA

A.1 Aleternate Proof to Equation 3.60

Let udq ∈ Hn×N be a pure quaternion matrix, such that all the entries of the quaternion

matrix udq have zero real part, qij = (0, uij), 1 < i < n, 1 < j < N ,

udq =



q11 q12 · · · q1N

q21 q22 · · · q2N

...
... . . . ...

qn1 qn2 · · · qnN


.

Consider the following

udqudq? =



∑N
i q1iq

?
1i

∑N
i q1iq

?
2i · · ·

∑N
i q1iq

?
ni∑N

i q2iq
?
1i

∑N
i q2iq

?
2i · · ·

∑N
i q2iq

?
ni

...
... . . . ...∑N

i qniq
?
1i

∑N
i qniq

?
2i · · ·

∑N
i qniq

?
ni


.

Expanding the quaternion multiplication results in the following expression

udqudq? =



∑N
i (~u1i · ~u1i, ~u1i ×−~u1i) · · ·

∑N
i (~u1i · ~uni, ~u1i ×−~uni)∑N

i (~u2i · ~u1i, ~u2i ×−~u1i) · · ·
∑N

i (~u2i · ~uni, ~u2i ×−~uni)
... . . . ...∑N

i (~uni · ~u1i, ~uni ×−~u1i) · · ·
∑N

i (~uni · ~uni, ~uni ×−~uni)


. (A.1)
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The real and imaginary parts of udqudq? are then expressed as follows

real(udqudq?) =



∑N
i ~u1i · ~u1i · · ·

∑N
i ~u1i · ~uni∑N

i ~u2i · ~u1i · · ·
∑N

i ~u2i · ~uni
... . . . ...∑N

i ~uni · ~u1i · · ·
∑N

i ~uni · ~uni


,

= U dU d> + V dV d> +W dW d>,

= A.

(A.2)

imagi(u
dqudq?) =



∑N
i w1,iv1,i − v1,iw1,i · · ·

∑N
i w1,ivn,i − v1,iwn,i∑N

i w1,iv2,i − v2,iw1,i · · ·
∑N

i w2,ivn,i − v2,iwn,i
... . . . ...∑N

i wn,iv1,i − vn,iw1,i · · ·
∑N

i wn,ivn,i − vn,iwn,i


,

= W dV d> − V dW d>,

= B.

(A.3)

imagj(u
dqudq?) =



∑N
i u1iw1i − w1iu1i · · ·

∑N
i u1iwni − w1iuni∑N

i u2iw1i − w2iu1i · · ·
∑N

i uniw1i − wniu1i

... . . . ...∑N
i uniw1i − wniu1i · · ·

∑N
i uniwni − wniuni


,

= U dW d> −W dU d>,

= C.

(A.4)
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imagk(udqudq?) =



∑N
i v1,iu1,i − u1,iv1,i · · ·

∑N
i v1,iun,i − u1,ivn,i∑N

i v1,iu2,i − u2,iv1,i · · ·
∑N

i v2,iun,i − u2,ivn,i
... . . . ...∑N

i vn,iu1,i − un,iv1,i · · ·
∑N

i vn,iun,i − un,ivn,i


,

= V dU d> − U dV d>,

= D.

(A.5)

Hence,

imag(udqudq?) =
(
W dV d> − V dW d>

)
i+
(
U dW d> −W dU d>

)
j+
(
V dU d> − U dV d>

)
k.

(A.6)

Putting the simplified forms of the equations together shows that

udqudq? = A+Bi + Cj +Dk

=
(
U dU d> + V dV d> +W dW d>

)
+
(
W dV d> − V dW d>

)
i

+
(
U dW d> −W dU d>

)
j

+
(
V dU d> − U dV d>

)
k.

(A.7)

The norm of udqudq? is give by

‖udqudq?‖2
F = ‖A‖2

F
dot product information

+ ‖Ci +Dj + Ek‖2
F

cross product information
, (A.8)
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APPENDIX B

DATA SETS

B.1 Experiment Two

B.1.1 Data set A

U d
max =



0.0787 0.00803 −0.0516 −0.00677 0.137

0.144 0.0369 0.00836 0.15 0.213

0.00708 0.0172 0.0674 0.12 −0.0144

0.0123 −0.0907 0.195 −0.256 −0.1

0.0387 −6.8e− 5 −0.167 −0.116 0.129


(B.1)

V d
max =



0.0592 0.0295 0.161 0.0357 0.0272

−0.126 0.0686 0.25 0.11 0.0161

−0.166 0.0163 −0.0175 0.0348 −0.02

0.149 −0.263 −0.0731 0.104 −0.18

0.237 0.0515 0.142 −0.0465 0.083


(B.2)

W d
max =



0.00448 −0.0372 0.0168 −0.112 0.0668

0.0349 −0.206 0.0883 −0.0852 0.126

0.0175 −0.106 0.0432 0.0775 0.0105

0.201 0.227 −0.0195 −0.0489 −0.207

−0.0634 0.0747 −0.0451 −0.169 0.0712


(B.3)
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B.1.2 Data set B

U d
min =



0.154 0.0987 0.0621 −0.00279 −0.0388

−0.195 0.0742 0.0832 −0.00799 −0.0407

−0.0147 0.03 0.0747 −0.00754 −0.0147

−0.12 −0.044 −0.211 0.161 0.0826

0.0203 0.0976 0.123 −0.0412 0.0715


(B.4)

V d
min =



0.0112 0.0617 0.0169 0.0453 −0.0321

0.342 0.0135 −0.079 −0.0506 0.085

0.165 −0.199 −0.1 0.119 0.0212

0.0735 0.0606 0.103 −0.0314 0.0216

−0.183 0.131 0.014 0.0157 0.119


(B.5)

W d
min =



0.268 0.0537 0.0211 −0.00505 −0.232

0.277 −0.113 −0.0807 0.0329 −0.024

−0.0943 0.18 0.0412 −0.0882 0.178

−0.102 0.021 −0.00946 0.0313 0.12

−0.254 −0.0312 0.0196 0.0678 0.23


(B.6)
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